Menu Close

If-H-n-1-1-2-1-3-1-n-1-n-prove-that-n-1-H-n-ln-2-n-ln-2-2-




Question Number 211594 by mnjuly1970 last updated on 14/Sep/24
   If ,  H_n ^(  −)  =1−(1/2) +(1/3) −...+(((−1)^(n+1) )/n)     prove that:Σ_(n=1) ^∞ ((H_n ^(  − ) −ln(2))/n)=ln^2 (2)         −−−−−−−−−−
$$ \\ $$$$\:{If}\:,\:\:\overset{\:\:−} {{H}}_{{n}} \:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:−…+\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}}\:\:\: \\ $$$${prove}\:{that}:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\overset{\:\:−\:} {{H}}_{{n}} −\mathrm{ln}\left(\mathrm{2}\right)}{{n}}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:−−−−−−−−−−\:\:\:\:\:\: \\ $$
Commented by Ghisom last updated on 14/Sep/24
just a hint:  H_n ^� =Σ_(j=1) ^n  (((−1)^(j+1) )/j) ⇒ lim_(n→∞)  H_n ^�  =ln 2  [Taylor series of ln (x+1); ∣x∣<1∨x=1]
$$\mathrm{just}\:\mathrm{a}\:\mathrm{hint}: \\ $$$$\bar {{H}}_{{n}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{j}+\mathrm{1}} }{{j}}\:\Rightarrow\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\bar {{H}}_{{n}} \:=\mathrm{ln}\:\mathrm{2} \\ $$$$\left[\mathrm{Taylor}\:\mathrm{series}\:\mathrm{of}\:\mathrm{ln}\:\left({x}+\mathrm{1}\right);\:\mid{x}\mid<\mathrm{1}\vee{x}=\mathrm{1}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *