Menu Close

Let-a-1-a-2-a-n-Is-n-real-numbers-All-fall-in-the-interval-1-1-1-Prove-that-1-i-j-n-1-a-i-a-j-1-




Question Number 211605 by MrGaster last updated on 14/Sep/24
              Let a_1 ,a_2 ,…a_n                 Is n real numbers.              All fall in the interval (−1,1)  ________________________  (1)Prove that:                      Π_(1≤i,j≤n) ((1+a_i a_j )/(1−a_i a_j ))≥1  (2) Determine the necessary   andsufficient conditions forl  equaity in the inequality.
Leta1,a2,anIsnrealnumbers.Allfallintheinterval(1,1)________________________(1)Provethat:1i,jn1+aiaj1aiaj1(2)Determinethenecessaryandsufficientconditionsforlequaityintheinequality.
Commented by mnjuly1970 last updated on 15/Sep/24
   mr   hardmath?
mrhardmath?
Answered by a.lgnaoui last updated on 14/Sep/24
E=1 ⇒ 2Πa_i a_j =0        So  ;if one of a_i or a_j =0  then Π ((1+a_i a_j )/(1−a_i a_j ))=1
E=12Πaiaj=0So;ifoneofaioraj=0thenΠ1+aiaj1aiaj=1
Commented by mr W last updated on 15/Sep/24
a_i  or a_j  is not a particular number!  for example you can not say:   such that Σ_(i=1) ^n a_i =0,  ⇒a_i =0.
aiorajisnotaparticularnumber!forexampleyoucannotsay:suchthatni=1ai=0,ai=0.

Leave a Reply

Your email address will not be published. Required fields are marked *