Menu Close

In-a-triangle-the-bisector-of-the-side-c-is-perpendicular-to-side-b-Prove-that-2tanC-tanA-0-




Question Number 211672 by MATHEMATICSAM last updated on 15/Sep/24
In a triangle the bisector of the side c is  perpendicular to side b. Prove that  2tanC + tanA = 0.
Inatrianglethebisectorofthesidecisperpendiculartosideb.Provethat2tanC+tanA=0.
Commented by Frix last updated on 16/Sep/24
If the bisector of a side is perpendicular to  the other side ⇒ the angle between these  sides is either 0° or 180°.  The bisector of the angle c cannot be  perpendicular to the side b because it′s the  angle between the sides a and b.
Ifthebisectorofasideisperpendiculartotheothersidetheanglebetweenthesesidesiseither0°or180°.Thebisectoroftheangleccannotbeperpendiculartothesidebbecauseitstheanglebetweenthesidesaandb.
Commented by Frix last updated on 16/Sep/24
δ=(√((a+b+c)(a+b−c)(a+c−b)(b+c−a)))  tan α =(δ/(b^2 +c^2 −a^2 ))  tan β =(δ/(a^2 +c^2 −b^2 ))  tan γ =(δ/(a^2 +b^2 −c^2 ))  2tan γ +tan α =0  ⇔  a^2 −3b^2 −c^2 =0  Let c=1 ⇒ a=(√(3b^2 +1))∧δ=2b(√(1−b^2 ))  ⇒ 0<b<1  tan α =−((√(1−b^2 ))/b)  tan β =((b(√(1−b^2 )))/(b^2 +1))  tan γ =((√(1−b^2 ))/(2b))  You can draw any of these to see what′s  perpendicular or not...
δ=(a+b+c)(a+bc)(a+cb)(b+ca)tanα=δb2+c2a2tanβ=δa2+c2b2tanγ=δa2+b2c22tanγ+tanα=0a23b2c2=0Letc=1a=3b2+1δ=2b1b20<b<1tanα=1b2btanβ=b1b2b2+1tanγ=1b22bYoucandrawanyofthesetoseewhatsperpendicularornot

Leave a Reply

Your email address will not be published. Required fields are marked *