Menu Close

In-triangle-ABC-C-60-If-the-length-of-opposite-sides-of-A-B-and-C-are-a-b-and-c-respectively-then-prove-that-1-a-c-1-b-c-3-a-b-c-




Question Number 211651 by MATHEMATICSAM last updated on 15/Sep/24
In triangle ABC, ∠C = 60°. If the length  of opposite sides of ∠A, ∠B and ∠C are  a, b and c respectively then prove that  (1/(a + c)) + (1/(b + c)) = (3/(a + b + c)) .
IntriangleABC,C=60°.IfthelengthofoppositesidesofA,BandCarea,bandcrespectivelythenprovethat1a+c+1b+c=3a+b+c.
Answered by som(math1967) last updated on 15/Sep/24
 ((a^2 +b^2 −c^2 )/(2ab))=cos60  ⇒a^2 +b^2 −c^2 =(1/2)×2ab  ⇒a^2 +b^2 =ab+c^2   ⇒a^2 +b^2 +bc+ca=ab+bc+ca+c^2   ⇒b(b+c)+a(a+c)= (a+c)(b+c)  ⇒(b/(a+c)) +(a/(b+c))=1  ⇒(b/(a+c))+1+(a/(b+c))+1=1+2  ⇒((a+b+c)/(a+c))+((a+b+c)/(b+c))=3  ⇒ (1/(a+c)) +(1/(b+c))=(3/(a+b+c))
a2+b2c22ab=cos60a2+b2c2=12×2aba2+b2=ab+c2a2+b2+bc+ca=ab+bc+ca+c2b(b+c)+a(a+c)=(a+c)(b+c)ba+c+ab+c=1ba+c+1+ab+c+1=1+2a+b+ca+c+a+b+cb+c=31a+c+1b+c=3a+b+c

Leave a Reply

Your email address will not be published. Required fields are marked *