Menu Close

sin-9x-sin-5x-sin-3x-find-x-




Question Number 211657 by hardmath last updated on 15/Sep/24
sin(9x) = sin(5x) + sin(3x)  find:  x = ?
$$\mathrm{sin}\left(\mathrm{9x}\right)\:=\:\mathrm{sin}\left(\mathrm{5x}\right)\:+\:\mathrm{sin}\left(\mathrm{3x}\right) \\ $$$$\mathrm{find}:\:\:\mathrm{x}\:=\:? \\ $$
Answered by Frix last updated on 15/Sep/24
sin ((2n+1)x) =sin x (1+2Σ_(k=1) ^n  cos (2kx))  ⇒  sin 9x −sin 5x −sin 3x =0  ⇔  2(cos 8x +cos 6x −cos 2x −(1/2))sin x =0  Let 0≤x<2π  ★ x=0∨x=π  cos 8x +cos 6x −cos 2x −(1/2)=0  This has a period of π and it′s symmetric  to ((nπ)/2)  ⇒ We must look for solutions x∈[0; (π/2)]  These should be at (((2k+1)π)/(30))  Testing leads to  ★ x=(π/(30)), ((7π)/(30)), ((11π)/(30)), ((13π)/(30))     [0; (π/2)]  ⇒ Due to symmetry  ★ x=((17π)/(30)), ((19π)/(39)), ((23π)/(30)), ((29π)/(30))     [(π/2); π]  ★ All these +π     [π; 2π)    We get  x=(π/(30)){0, 1, 7, 11, 13, 17, 19, 23, 29}+nπ
$$\mathrm{sin}\:\left(\left(\mathrm{2}{n}+\mathrm{1}\right){x}\right)\:=\mathrm{sin}\:{x}\:\left(\mathrm{1}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{cos}\:\left(\mathrm{2}{kx}\right)\right) \\ $$$$\Rightarrow \\ $$$$\mathrm{sin}\:\mathrm{9}{x}\:−\mathrm{sin}\:\mathrm{5}{x}\:−\mathrm{sin}\:\mathrm{3}{x}\:=\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{2}\left(\mathrm{cos}\:\mathrm{8}{x}\:+\mathrm{cos}\:\mathrm{6}{x}\:−\mathrm{cos}\:\mathrm{2}{x}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{sin}\:{x}\:=\mathrm{0} \\ $$$$\mathrm{Let}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi \\ $$$$\bigstar\:{x}=\mathrm{0}\vee{x}=\pi \\ $$$$\mathrm{cos}\:\mathrm{8}{x}\:+\mathrm{cos}\:\mathrm{6}{x}\:−\mathrm{cos}\:\mathrm{2}{x}\:−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{This}\:\mathrm{has}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:\pi\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{symmetric} \\ $$$$\mathrm{to}\:\frac{{n}\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{We}\:\mathrm{must}\:\mathrm{look}\:\mathrm{for}\:\mathrm{solutions}\:{x}\in\left[\mathrm{0};\:\frac{\pi}{\mathrm{2}}\right] \\ $$$$\mathrm{These}\:\mathrm{should}\:\mathrm{be}\:\mathrm{at}\:\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{30}} \\ $$$$\mathrm{Testing}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\bigstar\:{x}=\frac{\pi}{\mathrm{30}},\:\frac{\mathrm{7}\pi}{\mathrm{30}},\:\frac{\mathrm{11}\pi}{\mathrm{30}},\:\frac{\mathrm{13}\pi}{\mathrm{30}}\:\:\:\:\:\left[\mathrm{0};\:\frac{\pi}{\mathrm{2}}\right] \\ $$$$\Rightarrow\:\mathrm{Due}\:\mathrm{to}\:\mathrm{symmetry} \\ $$$$\bigstar\:{x}=\frac{\mathrm{17}\pi}{\mathrm{30}},\:\frac{\mathrm{19}\pi}{\mathrm{39}},\:\frac{\mathrm{23}\pi}{\mathrm{30}},\:\frac{\mathrm{29}\pi}{\mathrm{30}}\:\:\:\:\:\left[\frac{\pi}{\mathrm{2}};\:\pi\right] \\ $$$$\bigstar\:\mathrm{All}\:\mathrm{these}\:+\pi\:\:\:\:\:\left[\pi;\:\mathrm{2}\pi\right) \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{get} \\ $$$${x}=\frac{\pi}{\mathrm{30}}\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{7},\:\mathrm{11},\:\mathrm{13},\:\mathrm{17},\:\mathrm{19},\:\mathrm{23},\:\mathrm{29}\right\}+{n}\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *