Menu Close

Consider-a-system-consisting-ofw-to-masses-m-1-and-m-2-where-the-pendulum-rod-has-an-nolinear-elastic-coefficient-k-k-0-1-2-with-being-the-angle-between-the-rodand-the-vertical-directi




Question Number 211677 by MrGaster last updated on 16/Sep/24
Consider a system consisting ofw  to masses.m_1 and m_2 ,where the pendulum rod has an  nolinear elastic coefficient k(𝛉)=k_0 (1+𝛂𝛉^2 ),with𝛉 being the angle between the   rodand the vertical direction.  Suppose the angle is smallh  enoug that 𝛉 The square of can be ignored   andthe motion equation of thes  sytem can be approximated as as  imple swing with lineary  elasticit. However for largere  angls nonlinear factors becomei  sgnificant and must bed  considere in the equation ofo  motin. The motion equation ofh  tis system under the action ofv  graity and including nonlineara  elstic coefficient is derived.
$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{system}\:\mathrm{consisting}\:\mathrm{ofw} \\ $$$$\mathrm{to}\:\mathrm{masses}.\boldsymbol{{m}}_{\mathrm{1}} \boldsymbol{\mathrm{and}}\:\boldsymbol{{m}}_{\mathrm{2}} ,\mathrm{where}\:\mathrm{the}\:\mathrm{pendulum}\:\mathrm{rod}\:\mathrm{has}\:\mathrm{an} \\ $$$$\mathrm{nolinear}\:\mathrm{elastic}\:\mathrm{coefficient}\:\boldsymbol{{k}}\left(\boldsymbol{\theta}\right)=\boldsymbol{{k}}_{\mathrm{0}} \left(\mathrm{1}+\boldsymbol{\alpha\theta}^{\mathrm{2}} \right),\mathrm{with}\boldsymbol{\theta}\:\mathrm{being}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\: \\ $$$$\mathrm{rodand}\:\mathrm{the}\:\mathrm{vertical}\:\mathrm{direction}. \\ $$$$\mathrm{Suppose}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{is}\:\mathrm{smallh} \\ $$$$\mathrm{enoug}\:\mathrm{that}\:\boldsymbol{\theta}\:\mathrm{The}\:\mathrm{square}\:\mathrm{of}\:\mathrm{can}\:\mathrm{be}\:\mathrm{ignored}\: \\ $$$$\mathrm{andthe}\:\mathrm{motion}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{thes} \\ $$$$\mathrm{sytem}\:\mathrm{can}\:\mathrm{be}\:\mathrm{approximated}\:\mathrm{as}\:\mathrm{as} \\ $$$$\mathrm{imple}\:\mathrm{swing}\:\mathrm{with}\:\mathrm{lineary} \\ $$$$\mathrm{elasticit}.\:\mathrm{However}\:\mathrm{for}\:\mathrm{largere} \\ $$$$\mathrm{angls}\:\mathrm{nonlinear}\:\mathrm{factors}\:\mathrm{becomei} \\ $$$$\mathrm{sgnificant}\:\mathrm{and}\:\mathrm{must}\:\mathrm{bed} \\ $$$$\mathrm{considere}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{ofo} \\ $$$$\mathrm{motin}.\:\mathrm{The}\:\mathrm{motion}\:\mathrm{equation}\:\mathrm{ofh} \\ $$$$\mathrm{tis}\:\mathrm{system}\:\mathrm{under}\:\mathrm{the}\:\mathrm{action}\:\mathrm{ofv} \\ $$$$\mathrm{graity}\:\mathrm{and}\:\mathrm{including}\:\mathrm{nonlineara} \\ $$$$\mathrm{elstic}\:\mathrm{coefficient}\:\mathrm{is}\:\mathrm{derived}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *