Menu Close

x-2-2-x-Find-more-than-three-solutions-




Question Number 211675 by MrGaster last updated on 16/Sep/24
                  x^2 =2^x    Find more than three solutions
x2=2xFindmorethanthreesolutions
Commented by mr W last updated on 16/Sep/24
but there are only three solutions!
butthereareonlythreesolutions!
Answered by mr W last updated on 16/Sep/24
x^2 =2^x   ⇒x=±2^(x/2)   ⇒(−(x/2))×2^(−(x/2)) =±(1/2)  ⇒(−(x/2))(ln 2)×e^((−(x/2))(ln 2)) =±((ln 2)/2)  ⇒(−(x/2))(ln 2)=W(±((ln 2)/2))  ⇒x=−(2/(ln 2))×W(±((ln 2)/2))= { (2),( { (4),((−0.766664696)) :}) :}
x2=2xx=±2x2(x2)×2x2=±12(x2)(ln2)×e(x2)(ln2)=±ln22(x2)(ln2)=W(±ln22)x=2ln2×W(±ln22)={2{40.766664696
Answered by Frix last updated on 16/Sep/24
x^2 =2^x   2ln x =xln 2  −((ln x)/x)=−((ln 2)/2)  x=e^(−t)   e^t t+((ln 2)/2)=0  t=a+bi  (e^a (acos b −bsin b)+((ln 2)/2))+e^a (asin b +bcos b)i=0   { ((e^a (acos b −bsin b)+((ln 2)/2)=0)),((e^a (asin b +bcos b)=0 ⇒ a=−bcot b)) :}  ⇒  ((2b)/(sin b))−e^(bcot b)  ln 2 =0 [approximate]  t=−b(cot b −i)  x=e^(bcot b) (cos b −i sin b)    2 solutions ∉R:  b≈±7.45408757255  x≈9.09072986075±21.5079503505i
x2=2x2lnx=xln2lnxx=ln22x=etett+ln22=0t=a+bi(ea(acosbbsinb)+ln22)+ea(asinb+bcosb)i=0{ea(acosbbsinb)+ln22=0ea(asinb+bcosb)=0a=bcotb2bsinbebcotbln2=0[approximate]t=b(cotbi)x=ebcotb(cosbisinb)2solutionsR:b±7.45408757255x9.09072986075±21.5079503505i

Leave a Reply

Your email address will not be published. Required fields are marked *