Question Number 211727 by Spillover last updated on 18/Sep/24
Answered by MrGaster last updated on 03/Nov/24
$$=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\pi−\mathrm{4}{x}\right)\mathrm{tan}\:{x}\left(\mathrm{1}+\mathrm{tan}\:{x}\right)}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\pi−\mathrm{4}{x}\right)\mathrm{tan}\:{x}+\left(\pi−\mathrm{4}{x}\right)\mathrm{tan}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \left(\pi−\mathrm{4}{x}\right)\mathrm{tan}\:{x}\:\mathrm{sec}^{\mathrm{2}} {xdx}+\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \left(\pi−\mathrm{4}{x}\right)\mathrm{tan}^{\mathrm{2}} {x}\:\mathrm{sec}^{\mathrm{2}} {xdx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \left(\pi−\mathrm{4}{x}\right)\mathrm{tan}\:{xd}\left(\mathrm{tan}\:{x}\right)+\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \left(\pi−\mathrm{4}{x}\right)\mathrm{tan}^{\mathrm{2}} {xd}\left(\mathrm{tan}\:{x}\right) \\ $$$$=\left[\frac{\left(\pi−\mathrm{4}{x}\right)\mathrm{tan}^{\mathrm{2}} {x}}{\mathrm{2}}\right]_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} −\int_{−\frac{\pi\:}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \left(−\mathrm{4}\right)\frac{\mathrm{tan}^{\mathrm{2}} {x}}{\mathrm{2}}{dx}+\left[\frac{\left(\pi−\mathrm{4}{x}\right)\mathrm{tan}^{\mathrm{3}} {x}}{\mathrm{3}}\right]_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} −\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \left(−\mathrm{4}\right)\frac{\mathrm{tan}^{\mathrm{3}} {x}}{\mathrm{3}}{dx} \\ $$$$=\left[\frac{\pi\:\mathrm{tan}^{\mathrm{2}} {x}}{\mathrm{2}}−\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} {x}\right]_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} +\left[\frac{\pi\:\mathrm{tan}^{\mathrm{3}} {x}}{\mathrm{3}}−\frac{\mathrm{4}\:\mathrm{tan}^{\mathrm{3}} {x}}{\mathrm{3}}\right]_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\left[\frac{\pi}{\mathrm{2}}−\mathrm{2}\right]\mathrm{tan}^{\mathrm{2}} \frac{\pi}{\mathrm{4}}−\left[\frac{\pi}{\mathrm{2}}−\mathrm{2}\right]\mathrm{tan}^{\mathrm{2}} −\frac{\pi}{\mathrm{4}}+\left[\frac{\pi}{\mathrm{3}}−\frac{\mathrm{4}}{\mathrm{3}}\right]\mathrm{tan}^{\mathrm{3}} \frac{\pi}{\mathrm{4}}−\left[\frac{\pi}{\mathrm{3}}−\frac{\mathrm{4}}{\mathrm{3}}\right]\mathrm{tan}^{\mathrm{3}} −\frac{\pi}{\mathrm{4}} \\ $$$$=\left[\frac{\pi}{\mathrm{2}}−\mathrm{2}\right]−\left[\frac{\pi}{\mathrm{2}}−\mathrm{2}\right]+\left[\frac{\pi}{\mathrm{3}}−\frac{\mathrm{4}}{\mathrm{3}}\right]−\left[\frac{\pi}{\mathrm{3}}−\frac{\mathrm{4}}{\mathrm{3}}\right] \\ $$$$=\mathrm{0}+\mathrm{0} \\ $$$$=\mathrm{0} \\ $$
Commented by Spillover last updated on 03/Nov/24
$${great}.{thank}\:{you} \\ $$