Question Number 211749 by universe last updated on 19/Sep/24
$${volume}\:{bounded}\:{by}\:{the}\:{curve} \\ $$$$\:{z}\:=\:\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }\:\:\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\:\mathrm{6}^{\mathrm{2}} \\ $$
Answered by mr W last updated on 20/Sep/24
Commented by mr W last updated on 20/Sep/24
$${z}=\sqrt{\mathrm{3}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}=\sqrt{\mathrm{3}}{r} \\ $$$${h}=\sqrt{\mathrm{3}}{r} \\ $$$$\left(\sqrt{\mathrm{3}}{r}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} ={R}^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\mathrm{3}\:\Rightarrow{h}=\mathrm{3}\sqrt{\mathrm{3}} \\ $$$${V}=\frac{\mathrm{2}\pi{R}^{\mathrm{2}} \left({R}−{h}\right)}{\mathrm{3}}=\frac{\mathrm{2}\pi×\mathrm{6}^{\mathrm{2}} ×\mathrm{3}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)}{\mathrm{3}} \\ $$$$\:\:\:=\mathrm{72}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)\pi \\ $$
Commented by universe last updated on 20/Sep/24
$${thank}\:{you}\:{sir} \\ $$
Commented by universe last updated on 20/Sep/24
$${can}\:{u}\:{explain}\:{V}\:=\:\frac{\mathrm{2}\pi{R}^{\mathrm{2}} \left({R}−{r}\right)}{\mathrm{3}} \\ $$
Commented by mr W last updated on 20/Sep/24
Commented by universe last updated on 20/Sep/24
$${thanks}\:{sir} \\ $$
Answered by BHOOPENDRA last updated on 20/Sep/24
Answered by BHOOPENDRA last updated on 20/Sep/24
$${V}=\int\int\int\:\rho^{\mathrm{2}} {sin}\phi\:{d}\rho\:{d}\theta\:{d}\phi \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\int_{\mathrm{0}} ^{\mathrm{6}} \:\rho^{\mathrm{2}} \:{sin}\phi\:{d}\rho\:{d}\theta\:{d}\phi \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\frac{\mathrm{6}^{\mathrm{3}} −\mathrm{0}^{\mathrm{3}} }{\mathrm{3}}\right)\:{sin}\phi\:{d}\theta\:{d}\phi \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \mathrm{72}\left(\mathrm{2}\pi−\mathrm{0}\right){sin}\phi\:{d}\phi \\ $$$$\:\:\:=−\mathrm{144}\pi\:{cos}\phi\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \\ $$$$\:\:=\:\mathrm{144}\pi\:\left(\frac{\mathrm{2}\:−\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:=\mathrm{72}\pi\:\left(\mathrm{2}−\sqrt{\mathrm{3}}\right) \\ $$
Commented by universe last updated on 20/Sep/24
$${thank}\:{you}\:{sir} \\ $$
Commented by mr W last updated on 20/Sep/24
$${V}=\mathrm{72}\pi\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)\:>\mathrm{0} \\ $$
Commented by BHOOPENDRA last updated on 20/Sep/24
$${Thanks}\:{Mr}.{W}\:{it}\:{was}\:{typo} \\ $$