Menu Close

volume-bounded-by-the-curve-z-3x-2-3y-2-and-x-2-y-2-z-2-6-2-




Question Number 211749 by universe last updated on 19/Sep/24
volume bounded by the curve   z = (√(3x^2 +3y^2 ))   and x^2 +y^2 +z^2 = 6^2
volumeboundedbythecurvez=3x2+3y2andx2+y2+z2=62
Answered by mr W last updated on 20/Sep/24
Commented by mr W last updated on 20/Sep/24
z=(√(3(x^2 +y^2 )))=(√3)r  h=(√3)r  ((√3)r)^2 +r^2 =R^2 =6^2   ⇒r=3 ⇒h=3(√3)  V=((2πR^2 (R−h))/3)=((2π×6^2 ×3(2−(√3)))/3)     =72(2−(√3))π
z=3(x2+y2)=3rh=3r(3r)2+r2=R2=62r=3h=33V=2πR2(Rh)3=2π×62×3(23)3=72(23)π
Commented by universe last updated on 20/Sep/24
thank you sir
thankyousir
Commented by universe last updated on 20/Sep/24
can u explain V = ((2πR^2 (R−r))/3)
canuexplainV=2πR2(Rr)3
Commented by mr W last updated on 20/Sep/24
Commented by universe last updated on 20/Sep/24
thanks sir
thankssir
Answered by BHOOPENDRA last updated on 20/Sep/24
Answered by BHOOPENDRA last updated on 20/Sep/24
V=∫∫∫ ρ^2 sinφ dρ dθ dφ     =∫_0 ^(π/6) ∫_0 ^(2π)  ∫_0 ^6  ρ^2  sinφ dρ dθ dφ     =∫_0 ^(π/6) ∫_0 ^(2π) (((6^3 −0^3 )/3)) sinφ dθ dφ     =∫_0 ^(π/6) 72(2π−0)sinφ dφ     =−144π cosφ∣_0 ^(π/6)     = 144π (((2 −(√3))/2))      =72π (2−(√3))
V=ρ2sinϕdρdθdϕ=0π602π06ρ2sinϕdρdθdϕ=0π602π(63033)sinϕdθdϕ=0π672(2π0)sinϕdϕ=144πcosϕ0π6=144π(232)=72π(23)
Commented by universe last updated on 20/Sep/24
thank you sir
thankyousir
Commented by mr W last updated on 20/Sep/24
V=72π(2−(√3)) >0
V=72π(23)>0
Commented by BHOOPENDRA last updated on 20/Sep/24
Thanks Mr.W it was typo
ThanksMr.Witwastypo

Leave a Reply

Your email address will not be published. Required fields are marked *