Menu Close

Question-211796




Question Number 211796 by Spillover last updated on 21/Sep/24
Answered by Ghisom last updated on 21/Sep/24
∫(√((cos (x−a))/(sin (x+a))))dx=  =∫(√((cos a cos x +sin a sin x)/(sin a cos x +cos a sin x)))dx=       [t=tan x]  =∫(√((tsin a +cos a)/(tcos a +sin a)))×(dt/(t^2 +1))=       [u=(√((tsin a +cos a)/(tcos a +sin a)))]  =2∫(((1−2cos^2  a)u^2 )/(u^4 −4u^2 cos a sin a +1 ))du=  =I+J  I=−(((√2)(cos a −sin a))/2)∫(u/(u^2 −(√2)(cos a +sin a)u+1))du  J=(((√2)(cos a −sin a))/2)∫(u/(u^2 +(√2)(cos a +sin a)u+1))du  let a=b−(π/4)  I=−cos b ∫(u/(u^2 −2usin b +1))du  J=cos b ∫(u/(u^2 +2usin b +1))du  I=−sin b arctan ((u−sin b)/(cos b)) −((cos b)/2)ln (u^2 −2usin b +1)  J=−sin b arctan ((u+sin b)/(cos b)) +((cos b)/2)ln (u^2 +2usin b +1)  I+J=  =sin b arctan ((2ucos b)/(u^2 −1)) +((cos b)/2)ln ((u^2 +2usin b +1)/(u^2 −2usin b +1))  now insert b=a+(π/4) and u=(√((cos (x−a))/(sin (x+a))))
$$\int\sqrt{\frac{\mathrm{cos}\:\left({x}−{a}\right)}{\mathrm{sin}\:\left({x}+{a}\right)}}{dx}= \\ $$$$=\int\sqrt{\frac{\mathrm{cos}\:{a}\:\mathrm{cos}\:{x}\:+\mathrm{sin}\:{a}\:\mathrm{sin}\:{x}}{\mathrm{sin}\:{a}\:\mathrm{cos}\:{x}\:+\mathrm{cos}\:{a}\:\mathrm{sin}\:{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\right] \\ $$$$=\int\sqrt{\frac{{t}\mathrm{sin}\:{a}\:+\mathrm{cos}\:{a}}{{t}\mathrm{cos}\:{a}\:+\mathrm{sin}\:{a}}}×\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$\:\:\:\:\:\left[{u}=\sqrt{\frac{{t}\mathrm{sin}\:{a}\:+\mathrm{cos}\:{a}}{{t}\mathrm{cos}\:{a}\:+\mathrm{sin}\:{a}}}\right] \\ $$$$=\mathrm{2}\int\frac{\left(\mathrm{1}−\mathrm{2cos}^{\mathrm{2}} \:{a}\right){u}^{\mathrm{2}} }{{u}^{\mathrm{4}} −\mathrm{4}{u}^{\mathrm{2}} \mathrm{cos}\:{a}\:\mathrm{sin}\:{a}\:+\mathrm{1}\:}{du}= \\ $$$$={I}+{J} \\ $$$${I}=−\frac{\sqrt{\mathrm{2}}\left(\mathrm{cos}\:{a}\:−\mathrm{sin}\:{a}\right)}{\mathrm{2}}\int\frac{{u}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}\left(\mathrm{cos}\:{a}\:+\mathrm{sin}\:{a}\right){u}+\mathrm{1}}{du} \\ $$$${J}=\frac{\sqrt{\mathrm{2}}\left(\mathrm{cos}\:{a}\:−\mathrm{sin}\:{a}\right)}{\mathrm{2}}\int\frac{{u}}{{u}^{\mathrm{2}} +\sqrt{\mathrm{2}}\left(\mathrm{cos}\:{a}\:+\mathrm{sin}\:{a}\right){u}+\mathrm{1}}{du} \\ $$$$\mathrm{let}\:{a}={b}−\frac{\pi}{\mathrm{4}} \\ $$$${I}=−\mathrm{cos}\:{b}\:\int\frac{{u}}{{u}^{\mathrm{2}} −\mathrm{2}{u}\mathrm{sin}\:{b}\:+\mathrm{1}}{du} \\ $$$${J}=\mathrm{cos}\:{b}\:\int\frac{{u}}{{u}^{\mathrm{2}} +\mathrm{2}{u}\mathrm{sin}\:{b}\:+\mathrm{1}}{du} \\ $$$${I}=−\mathrm{sin}\:{b}\:\mathrm{arctan}\:\frac{{u}−\mathrm{sin}\:{b}}{\mathrm{cos}\:{b}}\:−\frac{\mathrm{cos}\:{b}}{\mathrm{2}}\mathrm{ln}\:\left({u}^{\mathrm{2}} −\mathrm{2}{u}\mathrm{sin}\:{b}\:+\mathrm{1}\right) \\ $$$${J}=−\mathrm{sin}\:{b}\:\mathrm{arctan}\:\frac{{u}+\mathrm{sin}\:{b}}{\mathrm{cos}\:{b}}\:+\frac{\mathrm{cos}\:{b}}{\mathrm{2}}\mathrm{ln}\:\left({u}^{\mathrm{2}} +\mathrm{2}{u}\mathrm{sin}\:{b}\:+\mathrm{1}\right) \\ $$$${I}+{J}= \\ $$$$=\mathrm{sin}\:{b}\:\mathrm{arctan}\:\frac{\mathrm{2}{u}\mathrm{cos}\:{b}}{{u}^{\mathrm{2}} −\mathrm{1}}\:+\frac{\mathrm{cos}\:{b}}{\mathrm{2}}\mathrm{ln}\:\frac{{u}^{\mathrm{2}} +\mathrm{2}{u}\mathrm{sin}\:{b}\:+\mathrm{1}}{{u}^{\mathrm{2}} −\mathrm{2}{u}\mathrm{sin}\:{b}\:+\mathrm{1}} \\ $$$$\mathrm{now}\:\mathrm{insert}\:{b}={a}+\frac{\pi}{\mathrm{4}}\:\mathrm{and}\:{u}=\sqrt{\frac{\mathrm{cos}\:\left({x}−{a}\right)}{\mathrm{sin}\:\left({x}+{a}\right)}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *