Menu Close

ab-ba-4c-a-b-3c-




Question Number 211861 by hardmath last updated on 22/Sep/24
ab^(−)   +  ba^(−)   =  4c  a + b + 3c = ?
$$\overline {\mathrm{ab}}\:\:+\:\:\overline {\mathrm{ba}}\:\:=\:\:\mathrm{4c} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{3c}\:=\:? \\ $$
Answered by A5T last updated on 22/Sep/24
10a+b+10b+a=11(a+b)=4c  a+b=4k≤9+9=18⇒k≤4  ⇒44k=4c⇒c=11k≤44⇒c∈(11,22,33,44)  when c=11; a+b=4⇒a+b+3c=37  when c=22; a+b=8⇒a+b+3c=74  when c=33; a+b=12⇒a+b+3c=111  when c=44; a+b=16⇒a+b+3c=148
$$\mathrm{10}{a}+{b}+\mathrm{10}{b}+{a}=\mathrm{11}\left({a}+{b}\right)=\mathrm{4}{c} \\ $$$${a}+{b}=\mathrm{4}{k}\leqslant\mathrm{9}+\mathrm{9}=\mathrm{18}\Rightarrow{k}\leqslant\mathrm{4} \\ $$$$\Rightarrow\mathrm{44}{k}=\mathrm{4}{c}\Rightarrow{c}=\mathrm{11}{k}\leqslant\mathrm{44}\Rightarrow{c}\in\left(\mathrm{11},\mathrm{22},\mathrm{33},\mathrm{44}\right) \\ $$$${when}\:{c}=\mathrm{11};\:{a}+{b}=\mathrm{4}\Rightarrow{a}+{b}+\mathrm{3}{c}=\mathrm{37} \\ $$$${when}\:{c}=\mathrm{22};\:{a}+{b}=\mathrm{8}\Rightarrow{a}+{b}+\mathrm{3}{c}=\mathrm{74} \\ $$$${when}\:{c}=\mathrm{33};\:{a}+{b}=\mathrm{12}\Rightarrow{a}+{b}+\mathrm{3}{c}=\mathrm{111} \\ $$$${when}\:{c}=\mathrm{44};\:{a}+{b}=\mathrm{16}\Rightarrow{a}+{b}+\mathrm{3}{c}=\mathrm{148} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *