Menu Close

2-m-1-1-mn-m-n-Z-




Question Number 211943 by Frix last updated on 25/Sep/24
2^(m−1) =1+mn  m, n ∈Z
$$\mathrm{2}^{{m}−\mathrm{1}} =\mathrm{1}+{mn} \\ $$$${m},\:{n}\:\in\mathbb{Z} \\ $$
Commented by BHOOPENDRA last updated on 25/Sep/24
{(m,n)∈Z×Z ∣ m is odd &n=((2^(m−1) −1)/m)}  Example of solutions  .m=1,n=0  .m=3,n=1  .m=7,n=9  The integer solution (m,n) for  both equation exist only when m is   odd integer that is not a multiple of  3 .specially ,for value of m that are  multiples of P(prime)(Except 1)  (i.e,m=P(2k+1) where k∈Z^+ ),  P ≥3there are no integer solutions for n.
$$\left\{\left({m},{n}\right)\in\mathbb{Z}×\mathbb{Z}\:\mid\:{m}\:{is}\:{odd}\:\&{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}}\right\} \\ $$$${Example}\:{of}\:{solutions} \\ $$$$.{m}=\mathrm{1},{n}=\mathrm{0} \\ $$$$.{m}=\mathrm{3},{n}=\mathrm{1} \\ $$$$.{m}=\mathrm{7},{n}=\mathrm{9} \\ $$$${The}\:{integer}\:{solution}\:\left({m},{n}\right)\:{for} \\ $$$${both}\:{equation}\:{exist}\:{only}\:{when}\:{m}\:{is}\: \\ $$$${odd}\:{integer}\:{that}\:{is}\:{not}\:{a}\:{multiple}\:{of} \\ $$$$\mathrm{3}\:.{specially}\:,{for}\:{value}\:{of}\:\boldsymbol{{m}}\:{that}\:{are} \\ $$$${multiples}\:{of}\:\mathbb{P}\left({prime}\right)\left({Except}\:\mathrm{1}\right) \\ $$$$\left({i}.{e},{m}=\mathbb{P}\left(\mathrm{2}{k}+\mathrm{1}\right)\:{where}\:{k}\in\mathbb{Z}^{+} \right), \\ $$$$\mathbb{P}\:\geq\mathrm{3}{there}\:{are}\:{no}\:{integer}\:{solutions}\:{for}\:{n}. \\ $$$$ \\ $$
Answered by BHOOPENDRA last updated on 25/Sep/24
{(m,n)∈Z×Z ∣m is odd and n=((2^(m−1) −1)/m)}  for all odd value of m ∈Z^+   But for values of m that are odd  multiple of P(prime)  (i.e m=P(2k+1) where  k∈ Z^+ & k≥1 ) there is no integer solutions   for n except 1.  N={m∈Z^+ :m=P(2k+1),k∈Z,k≥1,P≥3}  The n=((2^(m−1) −1)/(m )) for odd m.  1. 2^(m−1) =1+mn  2. 2^(m−1) =1−mn  Previous results Recape  (for Equation 1)S_1   .m=1 ,n=0  m=3 n=1  m=5 ,n=3  m=7 ,n=9  m=9 ,no solution(n=28.3333)  m=15 no solution   m=11 n=93  m=13 n=315  m=15 no solution  m=17 n=3855  m=21 no solution   m=25 no solution  m=27 no solution   m=33 no solution   similarly for equation 2  S_2 ={(1,0),(3,−1),(5,−3),(11,−93).....}  Key Insight  m=p(2k+1) for P≥3 ,k≥1 there are  no solutions for n (Except 1)
$$\left\{\left({m},{n}\right)\in\mathbb{Z}×\mathbb{Z}\:\mid{m}\:{is}\:{odd}\:{and}\:{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}}\right\} \\ $$$${for}\:{all}\:{odd}\:{value}\:{of}\:{m}\:\in\mathbb{Z}^{+} \\ $$$${But}\:{for}\:{values}\:{of}\:\boldsymbol{{m}}\:\boldsymbol{{that}}\:\boldsymbol{{are}}\:\boldsymbol{{odd}} \\ $$$$\boldsymbol{{multiple}}\:\boldsymbol{{of}}\:\mathbb{P}\left({prime}\right) \\ $$$$\left(\boldsymbol{{i}}.\boldsymbol{{e}}\:\boldsymbol{{m}}=\mathbb{P}\left(\mathrm{2}\boldsymbol{{k}}+\mathrm{1}\right)\:\boldsymbol{{where}}\right. \\ $$$$\left.\boldsymbol{{k}}\in\:\mathbb{Z}^{+} \&\:{k}\geqslant\mathrm{1}\:\right)\:{there}\:{is}\:{no}\:{integer}\:{solutions}\: \\ $$$${for}\:{n}\:{except}\:\mathrm{1}. \\ $$$$\boldsymbol{{N}}=\left\{{m}\in\mathbb{Z}^{+} :{m}=\mathbb{P}\left(\mathrm{2}{k}+\mathrm{1}\right),{k}\in\mathbb{Z},{k}\geqslant\mathrm{1},\mathbb{P}\geqslant\mathrm{3}\right\} \\ $$$${The}\:{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}\:}\:{for}\:{odd}\:{m}. \\ $$$$\mathrm{1}.\:\mathrm{2}^{{m}−\mathrm{1}} =\mathrm{1}+{mn} \\ $$$$\mathrm{2}.\:\mathrm{2}^{{m}−\mathrm{1}} =\mathrm{1}−{mn} \\ $$$$\boldsymbol{{Previous}}\:\boldsymbol{{results}}\:\boldsymbol{{Recape}} \\ $$$$\left({for}\:{Equation}\:\mathrm{1}\right){S}_{\mathrm{1}} \\ $$$$.{m}=\mathrm{1}\:,{n}=\mathrm{0} \\ $$$${m}=\mathrm{3}\:{n}=\mathrm{1} \\ $$$${m}=\mathrm{5}\:,{n}=\mathrm{3} \\ $$$${m}=\mathrm{7}\:,{n}=\mathrm{9} \\ $$$${m}=\mathrm{9}\:,\boldsymbol{{no}}\:\boldsymbol{{solution}}\left(\boldsymbol{{n}}=\mathrm{28}.\mathrm{3333}\right) \\ $$$${m}=\mathrm{15}\:{no}\:{solution}\: \\ $$$${m}=\mathrm{11}\:{n}=\mathrm{93} \\ $$$${m}=\mathrm{13}\:{n}=\mathrm{315} \\ $$$${m}=\mathrm{15}\:{no}\:{solution} \\ $$$${m}=\mathrm{17}\:{n}=\mathrm{3855} \\ $$$${m}=\mathrm{21}\:{no}\:{solution}\: \\ $$$${m}=\mathrm{25}\:{no}\:{solution} \\ $$$${m}=\mathrm{27}\:{no}\:{solution}\: \\ $$$${m}=\mathrm{33}\:{no}\:{solution}\: \\ $$$${similarly}\:{for}\:{equation}\:\mathrm{2} \\ $$$${S}_{\mathrm{2}} =\left\{\left(\mathrm{1},\mathrm{0}\right),\left(\mathrm{3},−\mathrm{1}\right),\left(\mathrm{5},−\mathrm{3}\right),\left(\mathrm{11},−\mathrm{93}\right)…..\right\} \\ $$$${Key}\:{Insight} \\ $$$${m}={p}\left(\mathrm{2}{k}+\mathrm{1}\right)\:{for}\:\mathbb{P}\geqslant\mathrm{3}\:,{k}\geqslant\mathrm{1}\:{there}\:{are} \\ $$$${no}\:{solutions}\:{for}\:{n}\:\left({Except}\:\mathrm{1}\right) \\ $$$$ \\ $$
Commented by Frix last updated on 25/Sep/24
m=9 ⇒ n=((85)/3)  Check it again!
$${m}=\mathrm{9}\:\Rightarrow\:{n}=\frac{\mathrm{85}}{\mathrm{3}} \\ $$$$\mathrm{Check}\:\mathrm{it}\:\mathrm{again}! \\ $$
Commented by Frix last updated on 25/Sep/24
I first thought I made a mistake because  you got all odd m... I′ve been in a hurry,  sorry for that.
$$\mathrm{I}\:\mathrm{first}\:\mathrm{thought}\:\mathrm{I}\:\mathrm{made}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{because} \\ $$$$\mathrm{you}\:\mathrm{got}\:\mathrm{all}\:\mathrm{odd}\:{m}…\:\mathrm{I}'\mathrm{ve}\:\mathrm{been}\:\mathrm{in}\:\mathrm{a}\:\mathrm{hurry}, \\ $$$$\mathrm{sorry}\:\mathrm{for}\:\mathrm{that}. \\ $$
Commented by BHOOPENDRA last updated on 25/Sep/24
Can you check again if there is any  mistake i ll think again
$${Can}\:{you}\:{check}\:{again}\:{if}\:{there}\:{is}\:{any} \\ $$$${mistake}\:{i}\:{ll}\:{think}\:{again} \\ $$
Commented by Frix last updated on 25/Sep/24
So far it′s ok. But also no solution for  m=25, 35, 49, 55, ...  Can we prove that m must be a prime  number ≥3? (With the only exception of  m=1)
$$\mathrm{So}\:\mathrm{far}\:\mathrm{it}'\mathrm{s}\:\mathrm{ok}.\:\mathrm{But}\:\mathrm{also}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for} \\ $$$${m}=\mathrm{25},\:\mathrm{35},\:\mathrm{49},\:\mathrm{55},\:… \\ $$$$\mathrm{Can}\:\mathrm{we}\:\mathrm{prove}\:\mathrm{that}\:{m}\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{prime} \\ $$$$\mathrm{number}\:\geqslant\mathrm{3}?\:\left(\mathrm{With}\:\mathrm{the}\:\mathrm{only}\:\mathrm{exception}\:\mathrm{of}\right. \\ $$$$\left.{m}=\mathrm{1}\right) \\ $$
Commented by A5T last updated on 25/Sep/24
Fermat′s theorem⇒2^(p−1) ≡1(mod p) (p≠2)  ⇒p∣2^(p−1) −1⇒((2^(p−1) −1)/p)∈Z.  So, when m is prime,n=((2^(m−1) −1)/m)∈Z    But this is not sufficient to claim m(>1) must  always be a prime. So, it still remains to  consider where m may be composite.
$${Fermat}'{s}\:{theorem}\Rightarrow\mathrm{2}^{{p}−\mathrm{1}} \equiv\mathrm{1}\left({mod}\:{p}\right)\:\left({p}\neq\mathrm{2}\right) \\ $$$$\Rightarrow{p}\mid\mathrm{2}^{{p}−\mathrm{1}} −\mathrm{1}\Rightarrow\frac{\mathrm{2}^{{p}−\mathrm{1}} −\mathrm{1}}{{p}}\in\mathbb{Z}. \\ $$$${So},\:{when}\:{m}\:{is}\:{prime},{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}}\in\mathbb{Z} \\ $$$$ \\ $$$${But}\:{this}\:{is}\:{not}\:{sufficient}\:{to}\:{claim}\:{m}\left(>\mathrm{1}\right)\:{must} \\ $$$${always}\:{be}\:{a}\:{prime}.\:{So},\:{it}\:{still}\:{remains}\:{to} \\ $$$${consider}\:{where}\:{m}\:{may}\:{be}\:{composite}. \\ $$
Commented by BHOOPENDRA last updated on 25/Sep/24
m=P(2k+1) where k∈ Z^+  and k ≥1   P is prime  P ≥3(except 1)   we can say that i think
$${m}=\mathbb{P}\left(\mathrm{2}{k}+\mathrm{1}\right)\:{where}\:{k}\in\:\mathbb{Z}^{+} \:{and}\:{k}\:\geqslant\mathrm{1}\: \\ $$$$\mathbb{P}\:{is}\:{prime}\:\:\mathbb{P}\:\geq\mathrm{3}\left({except}\:\mathrm{1}\right) \\ $$$$\:{we}\:{can}\:{say}\:{that}\:{i}\:{think} \\ $$
Answered by A5T last updated on 25/Sep/24
m,n∈Z⇒1+mn∈Z⇒m≥1.  Otherwise,m(<1)⇒2^(m−1) ∉Z  m=1⇒1=1+n⇒n=0  Let m>1 and even;then 1+mn is odd    →←  So,m>1 and odd, n=((2^(m−1) −1)/m)∈Z⇒m∣2^(m−1) −1  Note that when m is prime, 2^(m−1) −1≡0(mod m)  ⇒For all prime m,there exists n=((2^(m−1) −1)/m)∈Z    For composite:  since (2,m)=1⇒2^(φ(m)) −1≡0(mod m)  ⇒φ(m)∣m−1  Suppose m is composite;and let the   factorization be p_1 ^e_1  p_2 ^e_2  ...p_n ^e_n  (p_i =p_j ⇒i=j)  Then φ(m)=Π_(i=1) ^n (p_i ^e_i  −p_i ^(e_i −1) )=Π_(i=1) ^n p_i ^(e_i −1) (p_i −1)∣m−1  But since (m,m−1)=1⇒e_i ≤1  m=Π_(i=1) ^n p_i ⇒φ(m)=Π_(i=1) ^n (p_i −1)∣m−1  Let p_n  be the largest prime that divides m  ⇒(m/p_n )=k⇒p_n k=m>m−1  ...
$${m},{n}\in\mathbb{Z}\Rightarrow\mathrm{1}+{mn}\in\mathbb{Z}\Rightarrow{m}\geqslant\mathrm{1}. \\ $$$${Otherwise},{m}\left(<\mathrm{1}\right)\Rightarrow\mathrm{2}^{{m}−\mathrm{1}} \notin\mathbb{Z} \\ $$$${m}=\mathrm{1}\Rightarrow\mathrm{1}=\mathrm{1}+{n}\Rightarrow{n}=\mathrm{0} \\ $$$${Let}\:{m}>\mathrm{1}\:{and}\:{even};{then}\:\mathrm{1}+{mn}\:{is}\:{odd}\:\:\:\:\rightarrow\leftarrow \\ $$$${So},{m}>\mathrm{1}\:{and}\:{odd},\:{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}}\in\mathbb{Z}\Rightarrow{m}\mid\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1} \\ $$$${Note}\:{that}\:{when}\:{m}\:{is}\:{prime},\:\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}\equiv\mathrm{0}\left({mod}\:{m}\right) \\ $$$$\Rightarrow{For}\:{all}\:{prime}\:{m},{there}\:{exists}\:{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}}\in\mathbb{Z} \\ $$$$ \\ $$$${For}\:{composite}: \\ $$$${since}\:\left(\mathrm{2},{m}\right)=\mathrm{1}\Rightarrow\mathrm{2}^{\phi\left({m}\right)} −\mathrm{1}\equiv\mathrm{0}\left({mod}\:{m}\right) \\ $$$$\Rightarrow\phi\left({m}\right)\mid{m}−\mathrm{1} \\ $$$${Suppose}\:{m}\:{is}\:{composite};{and}\:{let}\:{the}\: \\ $$$${factorization}\:{be}\:{p}_{\mathrm{1}} ^{{e}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{e}_{\mathrm{2}} } …{p}_{{n}} ^{{e}_{{n}} } \left({p}_{{i}} ={p}_{{j}} \Rightarrow{i}={j}\right) \\ $$$${Then}\:\phi\left({m}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\left({p}_{{i}} ^{{e}_{{i}} } −{p}_{{i}} ^{{e}_{{i}} −\mathrm{1}} \right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{i}} ^{{e}_{{i}} −\mathrm{1}} \left({p}_{{i}} −\mathrm{1}\right)\mid{m}−\mathrm{1} \\ $$$${But}\:{since}\:\left({m},{m}−\mathrm{1}\right)=\mathrm{1}\Rightarrow{e}_{{i}} \leqslant\mathrm{1} \\ $$$${m}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{i}} \Rightarrow\phi\left({m}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\left({p}_{{i}} −\mathrm{1}\right)\mid{m}−\mathrm{1} \\ $$$${Let}\:{p}_{{n}} \:{be}\:{the}\:{largest}\:{prime}\:{that}\:{divides}\:{m} \\ $$$$\Rightarrow\frac{{m}}{{p}_{{n}} }={k}\Rightarrow{p}_{{n}} {k}={m}>{m}−\mathrm{1} \\ $$$$… \\ $$
Commented by A5T last updated on 25/Sep/24
2^(φ(m)) ≡1(mod m) since gcd(2,m)=1  But we know that m∣2^(m−1) −1,that is,  2^(m−1) ≡1(mod m)  Since φ(m)≤m−1; it follows that φ(m) must  divide m−1 from Lagrange′s theorem.
$$\mathrm{2}^{\phi\left({m}\right)} \equiv\mathrm{1}\left({mod}\:{m}\right)\:{since}\:{gcd}\left(\mathrm{2},{m}\right)=\mathrm{1} \\ $$$${But}\:{we}\:{know}\:{that}\:{m}\mid\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1},{that}\:{is}, \\ $$$$\mathrm{2}^{{m}−\mathrm{1}} \equiv\mathrm{1}\left({mod}\:{m}\right) \\ $$$${Since}\:\phi\left({m}\right)\leqslant{m}−\mathrm{1};\:{it}\:{follows}\:{that}\:\phi\left({m}\right)\:{must} \\ $$$${divide}\:{m}−\mathrm{1}\:{from}\:{Lagrange}'{s}\:{theorem}. \\ $$
Commented by BHOOPENDRA last updated on 25/Sep/24
The key point is to recheck the assumption  that φ(m)∣m−1 for composite m.  This is not true in general ,and thus  ,the reasoning for the composite case  breakdown .while fermat′s Little theorem  for prime,Euler′s theorem does not  gaurantee that m∣2^(m−1 ) for composite  m,beacuse φ(m) does not necessarily  divide (m−1)  To correct the reasoning,we would need  to carefully anlyze specific composite  number where m∣2^(m−1) holds ,without  relying on φ(m)∣m−1 as a genral rule.
$${The}\:{key}\:{point}\:{is}\:{to}\:{recheck}\:{the}\:{assumption} \\ $$$${that}\:\phi\left({m}\right)\mid{m}−\mathrm{1}\:{for}\:{composite}\:{m}. \\ $$$${This}\:{is}\:{not}\:{true}\:{in}\:{general}\:,{and}\:{thus} \\ $$$$,{the}\:{reasoning}\:{for}\:{the}\:{composite}\:{case} \\ $$$${breakdown}\:.{while}\:{fermat}'{s}\:{Little}\:{theorem} \\ $$$${for}\:{prime},{Euler}'{s}\:{theorem}\:{does}\:{not} \\ $$$${gaurantee}\:{that}\:{m}\mid\mathrm{2}^{{m}−\mathrm{1}\:} {for}\:{composite} \\ $$$${m},{beacuse}\:\phi\left({m}\right)\:{does}\:{not}\:{necessarily} \\ $$$${divide}\:\left({m}−\mathrm{1}\right) \\ $$$${To}\:{correct}\:{the}\:{reasoning},{we}\:{would}\:{need} \\ $$$${to}\:{carefully}\:{anlyze}\:{specific}\:{composite} \\ $$$${number}\:{where}\:{m}\mid\mathrm{2}^{{m}−\mathrm{1}} {holds}\:,{without} \\ $$$${relying}\:{on}\:\phi\left({m}\right)\mid{m}−\mathrm{1}\:{as}\:{a}\:{genral}\:{rule}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *