Question Number 212001 by mnjuly1970 last updated on 26/Sep/24
$$ \\ $$$$\:\:\:\:{prove}\:\:{that}: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\underset{{k}\in\mathbb{Z}} {\sum}\:\frac{\:\left(−\mathrm{1}\right)^{{k}} }{\:{x}\:+\:{k}\pi}\:=\:\frac{\mathrm{1}}{{sin}\left({x}\right)}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$
Answered by Berbere last updated on 27/Sep/24
$$\underset{{k}\in\mathbb{Z}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} {t}^{{x}−\mathrm{1}+{k}\pi} {dt}=\underset{{k}\in\mathbb{Z}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{x}+{k}\pi}={S}\left({x}\right) \\ $$$${S}\left({x}\right)={S}_{\mathrm{1}} \left({x}\right)−{S}_{\mathrm{1}} \left(−{x}\right)+\frac{\mathrm{1}}{{x}} \\ $$$${S}_{\mathrm{1}} \left({x}\right)=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{x}+{k}\pi}=\underset{{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−{t}^{\pi} \right)^{{k}} {t}^{{x}−\mathrm{1}} {dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{x}−\mathrm{1}} }{\mathrm{1}+{t}^{\pi} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}^{\pi} \right)}{\mathrm{1}−{t}^{\mathrm{2}\pi} }{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{z}^{\frac{{x}−\mathrm{1}}{\mathrm{2}\pi}} \left(\mathrm{1}−{z}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)}{\mathrm{1}−{z}}.{z}^{\frac{\mathrm{1}}{\mathrm{2}\pi}−\mathrm{1}} \frac{{dz}}{\left(\mathrm{2}\pi\right)} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}\pi\right)}\int_{\mathrm{0}} ^{\mathrm{1}} \left({z}^{\frac{{x}}{\mathrm{2}\pi}−\mathrm{1}} −{z}^{\frac{{x}}{\mathrm{2}\pi}−\frac{\mathrm{1}}{\mathrm{2}}} \right)\left(\mathrm{1}−{z}\right)^{−\mathrm{1}} {dz} \\ $$$$\Psi\left(\mathrm{1}+{z}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{t}^{{z}−\mathrm{1}} }{\mathrm{1}−{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}\pi\right)}\left[\Psi\left(\frac{{x}}{\mathrm{2}\pi}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\frac{{x}}{\mathrm{2}\pi}\right)\right] \\ $$$${S}=\frac{\mathrm{1}}{\left(\mathrm{2}\pi\right)\:}\left[\Psi\left(\frac{{x}}{\mathrm{2}\pi}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\frac{{x}}{\mathrm{2}\pi}\right)−\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{x}}{\mathrm{2}\pi}\right)+\Psi\left(−\frac{{x}}{\mathrm{2}\pi}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\pi\left[{cot}\left(\pi\left(\frac{{x}}{\mathrm{2}\pi}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\left[\Psi\left(\mathrm{1}+\frac{{x}}{\mathrm{2}\pi}\right)−\frac{\mathrm{2}\pi}{{x}}\right]+\Psi\left(−\frac{{x}}{\mathrm{2}\pi}\right)\right]\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\left[−\frac{\mathrm{2}\pi}{{x}}+\pi{cot}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}\right)+\pi{cot}\left(\pi+\frac{{x}}{\mathrm{2}}\right)\right] \\ $$$$=−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{sin}\left(\frac{{x}}{\mathrm{2}\left(\right.}\right)}{{cos}\left(\frac{{x}}{\mathrm{2}}\right)}+\frac{{cos}\left(\frac{{x}}{\mathrm{2}}\right)}{{sin}\left(\frac{{x}}{\mathrm{2}}\right)}\right]=−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}{cos}\left(\frac{{x}}{\mathrm{2}}\right){sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$=−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{sin}\left({x}\right)} \\ $$$${S}={S}\mathrm{1}−{S}_{\mathrm{1}} \left(−{x}\right)+\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{sin}\left({x}\right)}=\frac{\mathrm{1}}{{sin}\left({x}\right)} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 27/Sep/24
$${thanks}\:{alot}\:{Sir}… \\ $$
Commented by Berbere last updated on 27/Sep/24
$${Withe}\:{Pleasur} \\ $$