Menu Close

DEFINATION-OF-QUADRATIC-FORM-A-Quadratic-form-is-a-homogeneous-polynomial-of-degree-two-in-multiple-variable-Q-X-T-AX-Here-Q-Quadratic-form-ax-2-by-2-cz




Question Number 212028 by siva12345 last updated on 27/Sep/24
DEFINATION    OF   QUADRATIC  FORM:        A  Quadratic  form  is  a homogeneous  polynomial  of  degree two  in  multiple  variable.                      Q=X^T AX  Here  Q=Quadratic form.  ax^2 +by^2 +cz^2 +2hxy+2fyz+2gzx=0  By  using  these  Q=X^T AX  [we  can  write matrix A]  A= [(x),(y),(z) ] [((a     h     g)),((h     b     f)),((g     f     c)) ] [(x,y,z) ]  By  using  the  characteristic  equation  of   matrix  ∣A−λI∣ =0  To   get  eigen  equation   to  can  solve  eigen  equations  to  get  eigen values.  Suppose  substitute  the  eigwn  value  in  ∣A−1λI∣X =0  After  row  transformation  we  can  get  x_1 ,x_2 ,x_3   P =[e_(1  ) e_2   e_3 ]        ∴ {Here  p  is   a  modal  matrix}  Since  p  is  a  orthogonal  matrix  p^(−1) =p  D=P^T AP     Where  D   is  diagonal  matrix.  The  quadratic  form  can  be  reduce  into  normal  form  X = Y^T DY.  Here:             Index    =  The number of positive terms in its canonical  form  Signature =  The difference of positive and negative term in the canonical form  If all λ>0⇒ positive  definite.  If all λ<0⇒ negative  definite.  If all λ≥0  atleast one λ= 0⇒positive semidefinite.  If all λ≤ 0 atlest one  λ= 0⇒negative semidefinite.  If some λ are positive and some λ are negative⇒indefinite.  X = PY is used transformation of quadratic form to  normal form (or) canonical form.  Eg:  (Q) Reduce  the quadratic  form  3x^2 +2y^2 +3z^2 −2xy−2yz = 0  to canonical form by orthogonal transformation   and also find rank, index, nature  and  signature.  Sol: The given equation is  3x^2 +2y^2 +3z^2 −2xy−2yz=0  3xx+2yy+3zz−xy−xy−yz−yz=0   we know that Q=X^T AX                                        = [(X),(Y),(Z) ] [((     3     −1          0)),((−1          2      −1)),((     0      −1         3)) ] [(X,Y,Z) ]         The corresponding  symmetric  matrix A= [((     3     −1        0)),((−1         2    −1)),((     0     −1        3)) ]      To find the eigen values we can use the chareteristic eauation of matrix A is ∣A−λI∣= 0   [((     3−λ     −1                  0)),((−1                 2−λ       −1)),((    0             −1            3−λ)) ]= 0  (3−λ)[(2−λ)(3−λ)−1)]+1[−1(3−λ)]= 0  (3−λ)(−5λ+λ^2 +5)+(λ−3)= 0  λ^3 −8λ^2 +19λ−12= 0  λ=1,3,4    Case i:                 λ=1 substitute  in [A−λI]X = 0   [((    2    −1         0)),((−1        1    −1)),((     0   −1         2)) ] [(x_1 ),(x_2 ),(x_3 ) ]= [(0),(0),(0) ]                            R_2 ⇒R_2 +2R_1       [(( 2     −1         0  )),(( 0          1    −2)),(( 0     −1         2)) ]  [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]                        R_3 ⇒R_3 +R_2    [((2      −1         0 )),((0          1     −2)),((0          0         0)) ]  [(x_1 ),(x_2 ),(x_3 ) ] =   [(0),(0),(0) ]  2 x_(1 ) −x_2 =0   x_2 −2x_3 =0   x_3 = k   x_2 = 2k   x_1 = k   x_1 = [(1),(2),(1) ]k    Case ii:                  λ = 3   To substitite λ value in [A−λI]X = 0   [((     0       −1      0)),((−1       −1  −1)),((     0        −1      0)) ] [(x_1 ),(x_2 ),(x_3 ) ]=  [(0),(0),(0) ]                                (R_1 ⇔R_2 )   [(( −1     −1     −1)),((      0     −1         0)),((      0      −1        0)) ] [(x_1 ),(x_2 ),(x_3 ) ]=  [((0 )),(0),(0) ]                                 R_3 ⇒R_3 −R_2    [((  −1      −1   −1)),((       0      −1       0)),((       0          0        0)) ] [(x_1 ),(x_2 ),((x3)) ] =  [(0),(0),(0) ]           x_2 = 0      −x_1 −x_2 −x_(3 ) =0          x_3  = k          x_(1  ) = −k            x_2 =  [((−1)),((    0)),((    1)) ]k  Case iii:                  λ  = 4  To substitute in  equation                  [ A−λI ]X = 0   [((  −1       −1        0)),((  −1       −2   −1)),((      0       −1    −1)) ] [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]                                   R_2 ⇒R_2 −R_1    [((  −1     −1          0)),((      0      −1     −1)),((      0      −1     −1)) ] [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]                            R_3 ⇒R_3 −R_2    [((  −1    −1           0)),((       0    −1      −1)),((       0         0          0)) ] [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]       −x_1 −x_(2 ) = 0       −x_3 −x_3  = 0           x_(3 )  =    k          x_2  = −k          x_1  =    k          x_(3  ) =  [((    1)),((−1)),((     1  )) ]k  we can observe that vectors are orthogonally  mutually  we  normalize this vectors and obtain.  e_1  =  [((1/( (√6)))),((2/( (√6)))),((1/( (√6)))) ]     e_2 =   [(((−1)/(   (√2)))),((     0)),((    (1/( (√2))))) ]       e_3  = [((1/( (√3)))),(((−1)/( (√3)))),((1/( (√3)))) ]            let P = the modal matrix in normalized form   P = [e_(1  ) e_2  e_3 ] = [(((1/( (√6)))       ((−1)/( (√(2 ))))        (1/( (√3))))),(((2/( (√(6 )) ))       0          ((−1)/( (√3))))),(((1/( (√6)))         (1/( (√2)))      ((−1)/( (√3))))) ]  Since p is a orthogonal matrix P^(−1 ) =  P^T    So D = P^T AP    where  D  is diagnol matrix                                    = [(((1/( (√6)))        ((−2)/( (√6)))            (1/( (√6))))),((((−1)/( (√2)))           0             (1/( (√2))))),(((1/( (√3)))        ((−1)/( (√3)))            ((−1)/( (√3))))) ] [((    3       −1         0)),((−1           2     −1)),((    0       −1          3)) ] [(((1/( (√(6 ))))        −(1/( (√2)))         (1/( (√3))))),(((2/( (√6)))                0          ((−1)/( (√3))))),(((1/( (√6)))             (1/( (√2)))       −(1/( (√3))))) ]  D  =  [((1   0    0 )),((0    3   0)),((0    0    4)) ]  The quadratic form can be reduce to normal form Y^T  DY  Y^( T) DY = [y_1   y_(2 )  y_3 ]  [((1    0     0)),((0    3     0)),((0    0    4)) ]  [(y_1 ),(y_2 ),(y_3 ) ]      y_1 ^2 +3y_2 ^2 +4y_3 ^(2 )   = 0       Rank          = 3        Index = 3     Signature= 3       Nature=Positive definite   By orthogonal tfansformation X = PY   [(x_1 ),(x_2 ),(x_3 ) ] =  [(((1/( (√6)))             ((−1)/( (√2)))              (1/( (√3))))),(((2/( (√6)))               0                ((−1)/( (√3))))),(((1/( (√(6  ))))             (1/( (√2)))             (1/( (√3))))) ] [(y_1 ),(y_2 ),(y_3 ) ]  x_(1  ) = (y_1 /( (√6)))−(y_2 /( (√2)))+(y_3 /( (√3))).  x_2 = ((2y_1 )/( (√6)))−(y_3 /( (√(3.))))  x_3 = (y_1 /( (√6)))+(y_2 /( (√2)))+(y_3 /( (√(3.))))                            o
DEFINATIONOFQUADRATICFORM:AQuadraticformisahomogeneouspolynomialofdegreetwoinmultiplevariable.Q=XTAXHereQ=Quadraticform.ax2+by2+cz2+2hxy+2fyz+2gzx=0ByusingtheseQ=XTAX[wecanwritematrixA]A=[xyz][ahghbfgfc][xyz]ByusingthecharacteristicequationofmatrixAλI=0Togeteigenequationtocansolveeigenequationstogeteigenvalues.SupposesubstitutetheeigwnvalueinA1λIX=0Afterrowtransformationwecangetx1,x2,x3P=[e1e2e3]{Herepisamodalmatrix}Sincepisaorthogonalmatrixp1=pD=PTAPWhereDisdiagonalmatrix.ThequadraticformcanbereduceintonormalformX=YTDY.Here:Index=ThenumberofpositivetermsinitscanonicalformSignature=ThedifferenceofpositiveandnegativeterminthecanonicalformIfallλ>0positivedefinite.Ifallλ<0negativedefinite.Ifallλ0atleastoneλ=0positivesemidefinite.Ifallλ0atlestoneλ=0negativesemidefinite.Ifsomeλarepositiveandsomeλarenegativeindefinite.X=PYisusedtransformationofquadraticformtonormalform(or)canonicalform.Eg:(Q)Reducethequadraticform3x2+2y2+3z22xy2yz=0tocanonicalformbyorthogonaltransformationandalsofindrank,index,natureandsignature.Sol:Thegivenequationis3x2+2y2+3z22xy2yz=03xx+2yy+3zzxyxyyzyz=0weknowthatQ=XTAX=[XYZ][310121013][XYZ]ThecorrespondingsymmetricmatrixA=[310121013]TofindtheeigenvalueswecanusethechareteristiceauationofmatrixAisAλI∣=0[3λ1012λ1013λ]=0(3λ)[(2λ)(3λ)1)]+1[1(3λ)]=0(3λ)(5λ+λ2+5)+(λ3)=0λ38λ2+19λ12=0λ=1,3,4Casei:λ=1substitutein[AλI]X=0[210111012][x1x2x3]=[000]R2R2+2R1[210012012][x1x2x3]=[000]R3R3+R2[210012000][x1x2x3]=[000]2x1x2=0x22x3=0x3=kx2=2kx1=kx1=[121]kCaseii:λ=3Tosubstititeλvaluein[AλI]X=0[010111010][x1x2x3]=[000](R1R2)[111010010][x1x2x3]=[000]R3R3R2[111010000][x1x2x3]=[000]x2=0x1x2x3=0x3=kx1=kx2=[101]kCaseiii:λ=4Tosubstituteinequation[AλI]X=0[110121011][x1x2x3]=[000]R2R2R1[110011011][x1x2x3]=[000]R3R3R2[110011000][x1x2x3]=[000]x1x2=0x3x3=0x3=kx2=kx1=kx3=[111]kwecanobservethatvectorsareorthogonallymutuallywenormalizethisvectorsandobtain.e1=[162616]e2=[12012]e3=[131313]letP=themodalmatrixinnormalizedformP=[e1e2e3]=[16121326013161213]SincepisaorthogonalmatrixP1=PTSoD=PTAPwhereDisdiagnolmatrix=[16261612012131313][310121013][16121326013161213]D=[100030004]ThequadraticformcanbereducetonormalformYTDYYTDY=[y1y2y3][100030004][y1y2y3]y12+3y22+4y32=0Rank=3Index=3Signature=3Nature=PositivedefiniteByorthogonaltfansformationX=PY[x1x2x3]=[16121326013161213][y1y2y3]x1=y16y22+y33.x2=2y16y33.x3=y16+y22+y33.o

Leave a Reply

Your email address will not be published. Required fields are marked *