DEFINATION-OF-QUADRATIC-FORM-A-Quadratic-form-is-a-homogeneous-polynomial-of-degree-two-in-multiple-variable-Q-X-T-AX-Here-Q-Quadratic-form-ax-2-by-2-cz Tinku Tara September 27, 2024 None 0 Comments FacebookTweetPin Question Number 212028 by siva12345 last updated on 27/Sep/24 DEFINATIONOFQUADRATICFORM:AQuadraticformisahomogeneouspolynomialofdegreetwoinmultiplevariable.Q=XTAXHereQ=Quadraticform.ax2+by2+cz2+2hxy+2fyz+2gzx=0ByusingtheseQ=XTAX[wecanwritematrixA]A=[xyz][ahghbfgfc][xyz]Byusingthecharacteristicequationofmatrix∣A−λI∣=0Togeteigenequationtocansolveeigenequationstogeteigenvalues.Supposesubstitutetheeigwnvaluein∣A−1λI∣X=0Afterrowtransformationwecangetx1,x2,x3P=[e1e2e3]∴{Herepisamodalmatrix}Sincepisaorthogonalmatrixp−1=pD=PTAPWhereDisdiagonalmatrix.ThequadraticformcanbereduceintonormalformX=YTDY.Here:Index=ThenumberofpositivetermsinitscanonicalformSignature=ThedifferenceofpositiveandnegativeterminthecanonicalformIfallλ>0⇒positivedefinite.Ifallλ<0⇒negativedefinite.Ifallλ≥0atleastoneλ=0⇒positivesemidefinite.Ifallλ≤0atlestoneλ=0⇒negativesemidefinite.Ifsomeλarepositiveandsomeλarenegative⇒indefinite.X=PYisusedtransformationofquadraticformtonormalform(or)canonicalform.Eg:(Q)Reducethequadraticform3x2+2y2+3z2−2xy−2yz=0tocanonicalformbyorthogonaltransformationandalsofindrank,index,natureandsignature.Sol:Thegivenequationis3x2+2y2+3z2−2xy−2yz=03xx+2yy+3zz−xy−xy−yz−yz=0weknowthatQ=XTAX=[XYZ][3−10−12−10−13][XYZ]ThecorrespondingsymmetricmatrixA=[3−10−12−10−13]TofindtheeigenvalueswecanusethechareteristiceauationofmatrixAis∣A−λI∣=0[3−λ−10−12−λ−10−13−λ]=0(3−λ)[(2−λ)(3−λ)−1)]+1[−1(3−λ)]=0(3−λ)(−5λ+λ2+5)+(λ−3)=0λ3−8λ2+19λ−12=0λ=1,3,4Casei:λ=1substitutein[A−λI]X=0[2−10−11−10−12][x1x2x3]=[000]R2⇒R2+2R1[2−1001−20−12][x1x2x3]=[000]R3⇒R3+R2[2−1001−2000][x1x2x3]=[000]2x1−x2=0x2−2x3=0x3=kx2=2kx1=kx1=[121]kCaseii:λ=3Tosubstititeλvaluein[A−λI]X=0[0−10−1−1−10−10][x1x2x3]=[000](R1⇔R2)[−1−1−10−100−10][x1x2x3]=[000]R3⇒R3−R2[−1−1−10−10000][x1x2x3]=[000]x2=0−x1−x2−x3=0x3=kx1=−kx2=[−101]kCaseiii:λ=4Tosubstituteinequation[A−λI]X=0[−1−10−1−2−10−1−1][x1x2x3]=[000]R2⇒R2−R1[−1−100−1−10−1−1][x1x2x3]=[000]R3⇒R3−R2[−1−100−1−1000][x1x2x3]=[000]−x1−x2=0−x3−x3=0x3=kx2=−kx1=kx3=[1−11]kwecanobservethatvectorsareorthogonallymutuallywenormalizethisvectorsandobtain.e1=[162616]e2=[−12012]e3=[13−1313]letP=themodalmatrixinnormalizedformP=[e1e2e3]=[16−1213260−131612−13]SincepisaorthogonalmatrixP−1=PTSoD=PTAPwhereDisdiagnolmatrix=[16−2616−1201213−13−13][3−10−12−10−13][16−1213260−131612−13]D=[100030004]ThequadraticformcanbereducetonormalformYTDYYTDY=[y1y2y3][100030004][y1y2y3]y12+3y22+4y32=0Rank=3Index=3Signature=3Nature=PositivedefiniteByorthogonaltfansformationX=PY[x1x2x3]=[16−1213260−13161213][y1y2y3]x1=y16−y22+y33.x2=2y16−y33.x3=y16+y22+y33.o Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-arcsin-y-x-xy-dy-dx-Next Next post: Question-212067 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.