I-n-pi-pi-sin-nx-1-e-x-sinx-dx- Tinku Tara October 3, 2024 Integration 0 Comments FacebookTweetPin Question Number 212139 by mnjuly1970 last updated on 03/Oct/24 In=∫−ππsin(nx)(1+ex)sinxdx=? Answered by Frix last updated on 03/Oct/24 In=∫π−πsinnx(ex+1)sinxdx=[t=−x]=−∫−ππetsinnt(et+1)sintdt=[t=x]∫π−πexsinnx(ex+1)sinxdx⇒2In=∫π−πsinnx(ex+1)sinxdx+∫π−πexsinnx(ex+1)sinxdx==∫π−πsinnxsinxdx⇒In={0;n=2k+1π;n=2k Commented by mnjuly1970 last updated on 03/Oct/24 thanksalotsirFrix Commented by Frix last updated on 03/Oct/24 You′rewelcome! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-212148Next Next post: cos-2-x-sin-x-cos-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.