Menu Close

I-n-pi-pi-sin-nx-1-e-x-sinx-dx-




Question Number 212139 by mnjuly1970 last updated on 03/Oct/24
                      I_n  = ∫_(−π) ^( π) (( sin(nx ))/((1 + e^x )sinx)) dx =?
In=ππsin(nx)(1+ex)sinxdx=?
Answered by Frix last updated on 03/Oct/24
I_n =∫_(−π) ^π ((sin nx)/((e^x +1)sin x))dx =^([t=−x])   =−∫_π ^(−π) ((e^t sin nt)/((e^t +1)sin t))dt =^([t=x]) ∫_(−π) ^π ((e^x sin nx)/((e^x +1)sin x))dx  ⇒  2I_n =∫_(−π) ^π ((sin nx)/((e^x +1)sin x))dx+∫_(−π) ^π ((e^x sin nx)/((e^x +1)sin x))dx=  =∫_(−π) ^π ((sin nx)/(sin x))dx  ⇒  I_n = { ((0; n=2k+1)),((π; n=2k)) :}
In=ππsinnx(ex+1)sinxdx=[t=x]=ππetsinnt(et+1)sintdt=[t=x]ππexsinnx(ex+1)sinxdx2In=ππsinnx(ex+1)sinxdx+ππexsinnx(ex+1)sinxdx==ππsinnxsinxdxIn={0;n=2k+1π;n=2k
Commented by mnjuly1970 last updated on 03/Oct/24
thanks a lot sir Frix
thanksalotsirFrix
Commented by Frix last updated on 03/Oct/24
You′re welcome!
Yourewelcome!

Leave a Reply

Your email address will not be published. Required fields are marked *