Menu Close

n-0-1-n-3n-1-ln-2-1-3-




Question Number 212164 by mnjuly1970 last updated on 04/Oct/24
           Σ_(n=0) ^∞ (( (−1)^n )/(3n+1)) − ln((2)^(1/3)  ) = ?
n=0(1)n3n+1ln(23)=?
Answered by Berbere last updated on 04/Oct/24
=Σ_(n≥0) ∫_0 ^1 (−x^3 )^n dx−((ln(2))/3)=∫_0 ^1 (1/(1+x^3 ))dx−((ln(2))/3)  =∫_0 ^1 (1/((x+1)(x^2 −x+1)))dx−((ln(2))/3)  =∫_0 ^1 (((x+1)(x−2)−(x^2 −x+1))/(−3(x+1)(x^2 −x+1)))dx−((ln(2))/3)  =∫_0 ^1 ((x−2)/(−3(x^2 −x+1)))+(1/(3(x+1)))dx−((ln(2))/3)  =(1/3)∫_0 ^1 ((2−x)/(x^2 −x+1)))dx=−(1/6)∫_0 ^1 ((2x−1)/(x^2 −x+1))dx+(1/2)∫_0 ^1 (dx/(x^2 −x+1))  =(1/2)∫_0 ^1 (dx/((x−(1/2))^2 +(3/4)))=(1/( (√3)))tan^(−1) (((2x)/( (√3)))−(1/( (√3))))]_0 ^1   =(2/( (√3))).(π/6)=(π/(3(√3)))
=n001(x3)ndxln(2)3=0111+x3dxln(2)3=011(x+1)(x2x+1)dxln(2)3=01(x+1)(x2)(x2x+1)3(x+1)(x2x+1)dxln(2)3=01x23(x2x+1)+13(x+1)dxln(2)3=13012xx2x+1)dx=16012x1x2x+1dx+1201dxx2x+1=1201dx(x12)2+34=13tan1(2x313)]01=23.π6=π33
Commented by mnjuly1970 last updated on 04/Oct/24
\cancel

Leave a Reply

Your email address will not be published. Required fields are marked *