Question Number 212175 by RojaTaniya last updated on 05/Oct/24
Answered by A5T last updated on 05/Oct/24
$${Let}\:{a}+{b}+{c}={x};{ab}+{bc}+{ca}={y};{abc}={z} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ={x}^{\mathrm{2}} −\mathrm{2}{y}=\mathrm{20}…\left({i}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} ={x}\left({x}^{\mathrm{2}} −\mathrm{3}{y}\right)+\mathrm{3}{z}={x}^{\mathrm{3}} −\mathrm{3}{xy}+\mathrm{3}{z}=\mathrm{44}…\left({ii}\right) \\ $$$$\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)={xy}−{z}=\mathrm{156}..\left({iii}\right) \\ $$$$\left({ii}\right)+\mathrm{3}\left({iii}\right):\:{x}^{\mathrm{3}} =\mathrm{512}\Rightarrow{x}=\mathrm{8}\Rightarrow{y}=\mathrm{22}\Rightarrow{z}=\mathrm{20} \\ $$$$\Rightarrow{a},{b},{c}\:{roots}\:{of}:\:{s}^{\mathrm{3}} −\mathrm{8}{s}^{\mathrm{2}} +\mathrm{22}{s}−\mathrm{20}=\mathrm{0} \\ $$$$\Rightarrow\left({s}−\mathrm{2}\right)\left({s}^{\mathrm{2}} −\mathrm{6}{s}+\mathrm{10}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({a},{b},{c}\right)=\left(\mathrm{2},\mathrm{3}+{i},\mathrm{3}−{i}\right)\:{upto}\:{permutation} \\ $$$$\Rightarrow{a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} =\mathrm{2}^{\mathrm{6}} +\left(\mathrm{3}+{i}\right)^{\mathrm{6}} +\left(\mathrm{3}−{i}\right)^{\mathrm{6}} =−\mathrm{640} \\ $$
Commented by A5T last updated on 05/Oct/24
$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} =\left({a}^{\mathrm{2}} \right)^{\mathrm{3}} +\left({b}^{\mathrm{2}} \right)^{\mathrm{3}} +\left({c}^{\mathrm{2}} \right)^{\mathrm{3}} \\ $$$$=\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\left[\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{3}{b}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{3}{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right]+\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$=\mathrm{20}\left[\mathrm{400}−\mathrm{3}\left({ab}+{bc}+{ca}\right)^{\mathrm{2}} +\mathrm{6}{abc}\left({a}+{b}+{c}\right)\right]+\mathrm{3}{z}^{\mathrm{2}} \\ $$$$=\mathrm{20}\left[\mathrm{400}−\mathrm{3}\left(\mathrm{22}\right)^{\mathrm{2}} +\mathrm{3}\left(\mathrm{20}\right)\left(\mathrm{8}\right)\right]+\mathrm{3}\left(\mathrm{20}\right)^{\mathrm{2}} =−\mathrm{640} \\ $$
Commented by A5T last updated on 05/Oct/24
$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} =\left({a}^{\mathrm{3}} \right)^{\mathrm{2}} +\left({b}^{\mathrm{3}} \right)^{\mathrm{2}} +\left({c}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$=\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{2}\left({a}^{\mathrm{3}} {b}^{\mathrm{3}} +{b}^{\mathrm{3}} {c}^{\mathrm{3}} +{c}^{\mathrm{3}} {a}^{\mathrm{3}} \right) \\ $$$$=\mathrm{44}^{\mathrm{2}} −\mathrm{2}\left[\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} −\mathrm{3}{abc}\left({ab}+{bc}+{ca}\right)\left({a}+{b}+{c}\right)\right. \\ $$$$\left.+\mathrm{3}\left({abc}\right)^{\mathrm{2}} \right] \\ $$$$=\mathrm{44}^{\mathrm{2}} −\mathrm{2}\left[\mathrm{22}^{\mathrm{3}} −\mathrm{3}\left(\mathrm{20}\right)\left(\mathrm{22}\right)\left(\mathrm{8}\right)+\mathrm{3}\left(\mathrm{20}\right)^{\mathrm{2}} \right]=−\mathrm{640} \\ $$
Commented by Ghisom last updated on 05/Oct/24
$${a},\:{b},\:{c}\:\in\mathbb{C} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{3}} =\mathrm{512}\:\Rightarrow\:{x}=\mathrm{8}\vee{x}=−\mathrm{4}\pm\mathrm{4}\sqrt{\mathrm{3}}\mathrm{i} \\ $$$$\Rightarrow \\ $$$$ \\ $$$$\left[{a},\:{b},\:{c}\:\mathrm{ordered}\:\mathrm{by}\:\mathrm{angle}\right] \\ $$$$ \\ $$$$\left(\mathrm{1}\right) \\ $$$${x}=\mathrm{8}\wedge{y}=\mathrm{22}\wedge{z}=\mathrm{20} \\ $$$$\left({s}−{a}\right)\left({s}+{b}\right)\left({s}+{c}\right)= \\ $$$$={s}^{\mathrm{3}} −\mathrm{8}{s}^{\mathrm{2}} +\mathrm{22}{s}−\mathrm{20}=\mathrm{0} \\ $$$${a}=\mathrm{2} \\ $$$${b}=\mathrm{3}+\mathrm{i} \\ $$$${c}=\mathrm{3}−\mathrm{i} \\ $$$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} =−\mathrm{640}\:\bigstar \\ $$$$ \\ $$$$\left(\mathrm{2}\right) \\ $$$${x}=−\mathrm{4}−\mathrm{4}\sqrt{\mathrm{3}}\mathrm{i}\wedge{y}=−\mathrm{26}+\mathrm{16}\sqrt{\mathrm{3}}\mathrm{i}\wedge{z}=\mathrm{140}+\mathrm{40}\sqrt{\mathrm{3}}\mathrm{i} \\ $$$$\left({s}−{a}\right)\left({s}+{b}\right)\left({s}+{c}\right)= \\ $$$$={s}^{\mathrm{3}} +\mathrm{4}\left(\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}\right){s}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{13}−\mathrm{8}\sqrt{\mathrm{3}}\mathrm{i}\right){s}−\mathrm{20}\left(\mathrm{7}+\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}\right)=\mathrm{0} \\ $$$${a}\approx−\mathrm{5}.\mathrm{51488}+.\mathrm{736675i} \\ $$$${b}\approx−\mathrm{2}.\mathrm{60820}−\mathrm{5}.\mathrm{29849i} \\ $$$${c}\approx\mathrm{4}.\mathrm{12308}−\mathrm{2}.\mathrm{36639i} \\ $$$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} =\mathrm{48320}−\mathrm{8640}\sqrt{\mathrm{3}}\mathrm{i}\:\bigstar \\ $$$$ \\ $$$$\left(\mathrm{3}\right) \\ $$$${x}=−\mathrm{4}+\mathrm{4}\sqrt{\mathrm{3}}\mathrm{i}\wedge{y}=−\mathrm{26}−\mathrm{16}\sqrt{\mathrm{3}}\mathrm{i}\wedge{z}=\mathrm{140}−\mathrm{40}\sqrt{\mathrm{3}}\mathrm{i} \\ $$$$\left({s}−{a}\right)\left({s}+{b}\right)\left({s}+{c}\right)= \\ $$$$={s}^{\mathrm{3}} +\mathrm{4}\left(\mathrm{1}−\sqrt{\mathrm{3}}\mathrm{i}\right){s}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{13}+\mathrm{8}\sqrt{\mathrm{3}}\mathrm{i}\right){s}−\mathrm{20}\left(\mathrm{7}−\mathrm{2}\sqrt{\mathrm{3}}\mathrm{i}\right)=\mathrm{0} \\ $$$${a}\approx\mathrm{4}.\mathrm{12308}+\mathrm{2}.\mathrm{36639i} \\ $$$${b}\approx−\mathrm{2}.\mathrm{60820}+\mathrm{5}.\mathrm{29849i} \\ $$$${c}\approx−\mathrm{5}.\mathrm{51488}−.\mathrm{736675i} \\ $$$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} =\mathrm{48320}+\mathrm{8640}\sqrt{\mathrm{3}}\mathrm{i}\:\bigstar \\ $$