Menu Close

f-x-is-continous-and-lim-x-f-x-prove-max-f-x-exist-




Question Number 212204 by liuxinnan last updated on 06/Oct/24
f(x) is continous and  lim_(x→∞) f(x)=−∞  prove max(f(x)) exist
$${f}\left({x}\right)\:{is}\:{continous}\:{and} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=−\infty \\ $$$${prove}\:{max}\left({f}\left({x}\right)\right)\:{exist} \\ $$
Commented by mr W last updated on 06/Oct/24
that′s not true. a counter−example:  f(x)=−x^3
$${that}'{s}\:{not}\:{true}.\:{a}\:{counter}−{example}: \\ $$$${f}\left({x}\right)=−{x}^{\mathrm{3}} \\ $$
Commented by loredcs2357 last updated on 06/Oct/24
I think he means lim_(x→±∞) f(x)=−∞. In this case it′s true.
$$\mathrm{I}\:\mathrm{think}\:\mathrm{he}\:\mathrm{means}\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}{f}\left({x}\right)=−\infty.\:\mathrm{In}\:\mathrm{this}\:\mathrm{case}\:\mathrm{it}'\mathrm{s}\:\mathrm{true}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *