Question Number 212224 by RojaTaniya last updated on 07/Oct/24
$$\:{a},{b},{c}\in{R} \\ $$$$\:{a}+{b}+{c}=\mathrm{1},\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{1} \\ $$$$\:{a}^{\mathrm{10}} +{b}^{\mathrm{10}} +{c}^{\mathrm{10}} =\mathrm{1},\:{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} =? \\ $$
Answered by mr W last updated on 07/Oct/24
$$\mathrm{1}^{\mathrm{2}} =\mathrm{1}+\mathrm{2}\left({ab}+{bc}+{ca}\right)\: \\ $$$$\Rightarrow{ab}+{bc}+{ca}=\mathrm{0} \\ $$$$\mathrm{0}^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} +\mathrm{2}{abc}\left({a}+{b}+{c}\right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} =−\mathrm{2}{abc}=−\mathrm{2}{k} \\ $$$$\left(−\mathrm{2}{k}\right)^{\mathrm{2}} ={a}^{\mathrm{4}} {b}^{\mathrm{4}} +{b}^{\mathrm{4}} {c}^{\mathrm{4}} +{c}^{\mathrm{4}} {a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{a}^{\mathrm{4}} {b}^{\mathrm{4}} +{b}^{\mathrm{4}} {c}^{\mathrm{4}} +{c}^{\mathrm{4}} {a}^{\mathrm{4}} =\mathrm{2}{k}^{\mathrm{2}} \\ $$$$\mathrm{1}^{\mathrm{2}} ={a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +\mathrm{2}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} =\mathrm{1}+\mathrm{4}{k} \\ $$$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} +\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} =\left(\mathrm{1}+\mathrm{4}{k}\right)×\mathrm{1} \\ $$$$\Rightarrow{a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} =\mathrm{1}+\mathrm{6}{k}+\mathrm{3}{k}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\mathrm{4}{k}\right)^{\mathrm{2}} ={a}^{\mathrm{8}} +{b}^{\mathrm{8}} +{c}^{\mathrm{8}} +\mathrm{2}\left({a}^{\mathrm{4}} {b}^{\mathrm{4}} +{b}^{\mathrm{4}} {c}^{\mathrm{4}} +{c}^{\mathrm{4}} {a}^{\mathrm{4}} \right) \\ $$$$\Rightarrow{a}^{\mathrm{8}} +{b}^{\mathrm{8}} +{c}^{\mathrm{8}} =\mathrm{1}+\mathrm{8}{k}+\mathrm{12}{k}^{\mathrm{2}} \\ $$$${a}^{\mathrm{10}} +{b}^{\mathrm{10}} +{c}^{\mathrm{10}} +\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)\left({a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} \right)−{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} \right)=\left(\mathrm{1}+\mathrm{8}{k}+\mathrm{12}{k}^{\mathrm{2}} \right)×\mathrm{1} \\ $$$$\mathrm{1}+\left(−\mathrm{2}{k}\right)\left(\mathrm{1}+\mathrm{6}{k}+\mathrm{3}{k}^{\mathrm{2}} \right)−{k}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{4}{k}\right)=\left(\mathrm{1}+\mathrm{8}{k}+\mathrm{12}{k}^{\mathrm{2}} \right)×\mathrm{1} \\ $$$$\Rightarrow{k}\left(\mathrm{2}{k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{k}=\mathrm{0},\:−\frac{\mathrm{1}}{\mathrm{2}},\:−\mathrm{2} \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} =\mathrm{1}+\mathrm{4}{k}=\mathrm{1},\:−\mathrm{1},\:−\mathrm{7} \\ $$$${if}\:{a},{b},{c}\:\in{R}:\:{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} =\mathrm{1} \\ $$