Question Number 212354 by RojaTaniya last updated on 11/Oct/24

Answered by Rasheed.Sindhi last updated on 12/Oct/24

Commented by Frix last updated on 12/Oct/24

Commented by Rasheed.Sindhi last updated on 13/Oct/24

Answered by Frix last updated on 12/Oct/24
![a(x−p)(x−q)=0 ax^2 −a(p+q)x+apq=0 a, p, q, −a(p+q), apq are distinct⇒ a≠0∧p≠0∧q≠0 Let q=p+k; k∈{1, 2, 3, 4}; p+k≠0 ax^2 −a(2p+k)x+ap(p+k)=0 LetL_k ={a, p, p+k, −a(2p+k), ap(p+k)} ∣a+a(2p+k)∣=∣a(2p+k+1)∣≤4 ∣a−ap(p+k)∣=∣a(p^2 +pk−1)∣≤4 ⇒ ∣a∣≤4∧∣2p+k+1∣≤4∧∣p^2 +pk−1∣≤4 ∣a∣≤4 ⇒ a=±1, ±2, ±3, ±4 ∣2p+k+1∣≤4∧∣p^2 +pk−1∣≤4 ⇒ [remember p≠0∧p+k≠0] k=1 ⇒ p=−2, 1 k=2 ⇒ p=−3, −1 k=3 ⇒ p=−4, −2, −1 k=4 ⇒ p=−3, −1 L_1 ={a, p, p+1, −a(2p+1), ap(p+1)} p=−2 L_1 ={a, −2, −1, 3a, 2a} impossible p=1 L_1 ={a, 1, 2, −3a, 2a} impossible L_2 ={a, p, p+2, −2a(p+1), ap(p+2)} p=−3 L_2 ={a, −3, −1, 4a, 3a} impossible p=−1 L_2 ={a, −1, 1, 0, −a} a=±2 ★ L_3 ={a, p, p+3, −a(2p+3), ap(p+3)} p=−4 L_3 ={a, −4, −1, 5a, 4a} impossible p=−2 L_3 ={a, −2, 1, a, −2a} impossible p=−1 L_3 ={a, −1, 2, −a, −2a} impossible L_4 ={a, p, p+4, −2a(p+2), ap(p+4)} p=−3 L_4 ={a, −3, 1, 2a, −3a} impossible p=−1 L_4 ={a, −1, 3, −2a, −3a} impossible ★ We get 2 solutions 1. a=−2∧b=0∧c=2∧p=−1∧q=1 −2x^2 +2=0 2. a=2∧b=0∧c=−2∧p=−1∧q=1 2x^2 −2=0](https://www.tinkutara.com/question/Q212402.png)