Menu Close

ax-2-bx-c-0-a-b-c-and-two-roots-of-the-eqn-are-5-consecutive-integers-in-some-order-Find-their-values-




Question Number 212354 by RojaTaniya last updated on 11/Oct/24
  ax^2 +bx+c=0   a,b,c and two roots of the eqn.   are 5 consecutive integers in    some order. Find their values.
ax2+bx+c=0a,b,candtworootsoftheeqn.are5consecutiveintegersinsomeorder.Findtheirvalues.
Answered by Rasheed.Sindhi last updated on 12/Oct/24
A Try...  •let α & β are roots of ax^2 +bx+c=0  •a,b,c ,α,β ∈ Z  •α+β=((−b)/a) ∈ Z , αβ=(c/a) ∈ Z      ⇒a divides b & c  •let b=ma , c=na  α,β=((−ma±(√(m^2 a^2 −4a(na))))/(2a))          =((−m±(√(m^2 −4n)))/2)      m^2 −4n is perfect square      and       ((−m±(√(m^2 −4n)))/2) ∈ Z  m^2 −4n is perfect square  m^2 =0,1,4,9,...  m^2 =0⇒n=0,−1,−4,  m^2 =1⇒n=0,−2,  m^2 =4⇒n=0,1,−3,   determinant ((m,n,(m^2 −4n),( ((−m±(√(m^2 −4n)))/2))),((    0),(0,−1,−4,...),(0,4,16,...),),((    1),(0,−2,),,),((−1),(0,−2),,),((    2),(0,1,−3,),,),((−2),(0,1,−3,),,))
ATryletα&βarerootsofax2+bx+c=0a,b,c,α,βZα+β=baZ,αβ=caZadividesb&cletb=ma,c=naα,β=ma±m2a24a(na)2a=m±m24n2m24nisperfectsquareandm±m24n2Zm24nisperfectsquarem2=0,1,4,9,m2=0n=0,1,4,m2=1n=0,2,m2=4n=0,1,3,mnm24nm±m24n200,1,4,0,4,16,10,2,10,220,1,3,20,1,3,
Commented by Frix last updated on 12/Oct/24
This narrows the possibilities:  Let L={a, b, c, x_1 , x_2 }  1≤max L −min L ≤4  I think there′s only one solution...
Thisnarrowsthepossibilities:LetL={a,b,c,x1,x2}1maxLminL4Ithinktheresonlyonesolution
Commented by Rasheed.Sindhi last updated on 13/Oct/24
Thanks sir!
Thankssir!
Answered by Frix last updated on 12/Oct/24
a(x−p)(x−q)=0  ax^2 −a(p+q)x+apq=0  a, p, q, −a(p+q), apq are distinct⇒  a≠0∧p≠0∧q≠0    Let q=p+k; k∈{1, 2, 3, 4}; p+k≠0  ax^2 −a(2p+k)x+ap(p+k)=0    LetL_k ={a, p, p+k, −a(2p+k), ap(p+k)}    ∣a+a(2p+k)∣=∣a(2p+k+1)∣≤4  ∣a−ap(p+k)∣=∣a(p^2 +pk−1)∣≤4  ⇒ ∣a∣≤4∧∣2p+k+1∣≤4∧∣p^2 +pk−1∣≤4    ∣a∣≤4 ⇒ a=±1, ±2, ±3, ±4  ∣2p+k+1∣≤4∧∣p^2 +pk−1∣≤4 ⇒            [remember p≠0∧p+k≠0]       k=1 ⇒ p=−2, 1       k=2 ⇒ p=−3, −1       k=3 ⇒ p=−4, −2, −1       k=4 ⇒ p=−3, −1    L_1 ={a, p, p+1, −a(2p+1), ap(p+1)}       p=−2       L_1 ={a, −2, −1, 3a, 2a} impossible       p=1       L_1 ={a, 1, 2, −3a, 2a} impossible  L_2 ={a, p, p+2, −2a(p+1), ap(p+2)}       p=−3       L_2 ={a, −3, −1, 4a, 3a} impossible       p=−1       L_2 ={a, −1, 1, 0, −a} a=±2 ★  L_3 ={a, p, p+3, −a(2p+3), ap(p+3)}       p=−4       L_3 ={a, −4, −1, 5a, 4a} impossible       p=−2       L_3 ={a, −2, 1, a, −2a} impossible       p=−1       L_3 ={a, −1, 2, −a, −2a} impossible  L_4 ={a, p, p+4, −2a(p+2), ap(p+4)}       p=−3       L_4 ={a, −3, 1, 2a, −3a} impossible       p=−1       L_4 ={a, −1, 3, −2a, −3a} impossible    ★  We get 2 solutions  1. a=−2∧b=0∧c=2∧p=−1∧q=1  −2x^2 +2=0  2. a=2∧b=0∧c=−2∧p=−1∧q=1  2x^2 −2=0
a(xp)(xq)=0ax2a(p+q)x+apq=0a,p,q,a(p+q),apqaredistincta0p0q0Letq=p+k;k{1,2,3,4};p+k0ax2a(2p+k)x+ap(p+k)=0LetLk={a,p,p+k,a(2p+k),ap(p+k)}a+a(2p+k)∣=∣a(2p+k+1)∣⩽4aap(p+k)∣=∣a(p2+pk1)∣⩽4a∣⩽42p+k+1∣⩽4p2+pk1∣⩽4a∣⩽4a=±1,±2,±3,±42p+k+1∣⩽4p2+pk1∣⩽4[rememberp0p+k0]k=1p=2,1k=2p=3,1k=3p=4,2,1k=4p=3,1L1={a,p,p+1,a(2p+1),ap(p+1)}p=2L1={a,2,1,3a,2a}impossiblep=1L1={a,1,2,3a,2a}impossibleL2={a,p,p+2,2a(p+1),ap(p+2)}p=3L2={a,3,1,4a,3a}impossiblep=1L2={a,1,1,0,a}a=±2L3={a,p,p+3,a(2p+3),ap(p+3)}p=4L3={a,4,1,5a,4a}impossiblep=2L3={a,2,1,a,2a}impossiblep=1L3={a,1,2,a,2a}impossibleL4={a,p,p+4,2a(p+2),ap(p+4)}p=3L4={a,3,1,2a,3a}impossiblep=1L4={a,1,3,2a,3a}impossibleWeget2solutions1.a=2b=0c=2p=1q=12x2+2=02.a=2b=0c=2p=1q=12x22=0

Leave a Reply

Your email address will not be published. Required fields are marked *