Menu Close

Use-the-integration-by-parts-2-r-2-4-dr-




Question Number 212467 by Hanuda354 last updated on 14/Oct/24
Use  the  integration  by  parts.    ∫ (2/( (√(r^2 −4)))) dr
$$\mathrm{Use}\:\:\mathrm{the}\:\:\mathrm{integration}\:\:\mathrm{by}\:\:\mathrm{parts}. \\ $$$$ \\ $$$$\int\:\frac{\mathrm{2}}{\:\sqrt{{r}^{\mathrm{2}} −\mathrm{4}}}\:{dr}\: \\ $$
Answered by mehdee7396 last updated on 14/Oct/24
r=2coshx⇒dr=2sinhxdx  ⇒I=∫((4sinhxdx)/(2(√(cosh^2 x−1))))=2∫dx=2x+c  =2coh^(−1) (r/2)+c=2ln(r+(√(r^2 −4)))+c′ ✓
$${r}=\mathrm{2}{coshx}\Rightarrow{dr}=\mathrm{2}{sinhxdx} \\ $$$$\Rightarrow{I}=\int\frac{\mathrm{4}{sinhxdx}}{\mathrm{2}\sqrt{{cosh}^{\mathrm{2}} {x}−\mathrm{1}}}=\mathrm{2}\int{dx}=\mathrm{2}{x}+{c} \\ $$$$=\mathrm{2}{coh}^{−\mathrm{1}} \frac{{r}}{\mathrm{2}}+{c}=\mathrm{2}{ln}\left({r}+\sqrt{{r}^{\mathrm{2}} −\mathrm{4}}\right)+{c}'\:\checkmark \\ $$$$ \\ $$
Commented by Frix last updated on 14/Oct/24
Yes but it says “use the integration by parts”
$$\mathrm{Yes}\:\mathrm{but}\:\mathrm{it}\:\mathrm{says}\:“\mathrm{use}\:\mathrm{the}\:\mathrm{integration}\:\mathrm{by}\:\mathrm{parts}'' \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *