Menu Close

Given-a-b-c-and-d-are-reals-numbers-such-that-a-2-b-2-10-c-2-d-2-10-ab-cd-0-Find-ac-bd-




Question Number 212499 by efronzo1 last updated on 15/Oct/24
  Given a,b,c and d are reals    numbers such that        { ((a^2 +b^2 =10)),((c^2 +d^2 =10 )),((ab+cd=0)) :}    Find ac + bd.
$$\:\:\mathrm{Given}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{and}\:\mathrm{d}\:\mathrm{are}\:\mathrm{reals}\: \\ $$$$\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\begin{cases}{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{10}}\\{\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} =\mathrm{10}\:}\\{\mathrm{ab}+\mathrm{cd}=\mathrm{0}}\end{cases} \\ $$$$\:\:\mathrm{Find}\:\mathrm{ac}\:+\:\mathrm{bd}. \\ $$
Answered by ajfour last updated on 15/Oct/24
(a+b)^2 =10+2ab  (c+d)^2 =10+2cd  let   (d/b)=−(c/a)=k  c^2 +d^2 =k^2 (a^2 +b^2 )=10  ⇒  k^2 =1    as   (a^2 +b^2 )=10    say  k=1  ⇒  d=b, c=−a  ac+bd=−a^2 +b^2 =10−2a^2 =2b^2 −10  i think it depends on choice of   a^2 , b^2   with the condition a^2 +b^2 =10
$$\left({a}+{b}\right)^{\mathrm{2}} =\mathrm{10}+\mathrm{2}{ab} \\ $$$$\left({c}+{d}\right)^{\mathrm{2}} =\mathrm{10}+\mathrm{2}{cd} \\ $$$${let}\:\:\:\frac{{d}}{{b}}=−\frac{{c}}{{a}}={k} \\ $$$${c}^{\mathrm{2}} +{d}^{\mathrm{2}} ={k}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\mathrm{10} \\ $$$$\Rightarrow\:\:{k}^{\mathrm{2}} =\mathrm{1}\:\:\:\:{as}\:\:\:\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\mathrm{10}\:\: \\ $$$${say}\:\:{k}=\mathrm{1}\:\:\Rightarrow \\ $$$${d}={b},\:{c}=−{a} \\ $$$${ac}+{bd}=−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{10}−\mathrm{2}{a}^{\mathrm{2}} =\mathrm{2}{b}^{\mathrm{2}} −\mathrm{10} \\ $$$${i}\:{think}\:{it}\:{depends}\:{on}\:{choice}\:{of}\: \\ $$$${a}^{\mathrm{2}} ,\:{b}^{\mathrm{2}} \:\:{with}\:{the}\:{condition}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{10} \\ $$$$ \\ $$
Answered by Ghisom last updated on 16/Oct/24
ab+cd=0 ⇒ d=−((ab)/c)  c^2 +d^2 =10 ⇒ b^2 =((c^2 (10−c^2 ))/a^2 )  a^2 +b^2 =10 ⇒ a^4 −10a^2 −c^4 +10c^2 =0  ⇒  c=±a∨c=±(√(10−a^2 ))  ⇒ ac+bd=±2(a^2 −5)∨ac+bd=0
$${ab}+{cd}=\mathrm{0}\:\Rightarrow\:{d}=−\frac{{ab}}{{c}} \\ $$$${c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{10}\:\Rightarrow\:{b}^{\mathrm{2}} =\frac{{c}^{\mathrm{2}} \left(\mathrm{10}−{c}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} } \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{10}\:\Rightarrow\:{a}^{\mathrm{4}} −\mathrm{10}{a}^{\mathrm{2}} −{c}^{\mathrm{4}} +\mathrm{10}{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$${c}=\pm{a}\vee{c}=\pm\sqrt{\mathrm{10}−{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{ac}+{bd}=\pm\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{5}\right)\vee{ac}+{bd}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *