Menu Close

Given-a-b-c-and-d-are-reals-numbers-such-that-a-2-b-2-10-c-2-d-2-10-ab-cd-0-Find-ac-bd-




Question Number 212499 by efronzo1 last updated on 15/Oct/24
  Given a,b,c and d are reals    numbers such that        { ((a^2 +b^2 =10)),((c^2 +d^2 =10 )),((ab+cd=0)) :}    Find ac + bd.
Givena,b,canddarerealsnumberssuchthat{a2+b2=10c2+d2=10ab+cd=0Findac+bd.
Answered by ajfour last updated on 15/Oct/24
(a+b)^2 =10+2ab  (c+d)^2 =10+2cd  let   (d/b)=−(c/a)=k  c^2 +d^2 =k^2 (a^2 +b^2 )=10  ⇒  k^2 =1    as   (a^2 +b^2 )=10    say  k=1  ⇒  d=b, c=−a  ac+bd=−a^2 +b^2 =10−2a^2 =2b^2 −10  i think it depends on choice of   a^2 , b^2   with the condition a^2 +b^2 =10
(a+b)2=10+2ab(c+d)2=10+2cdletdb=ca=kc2+d2=k2(a2+b2)=10k2=1as(a2+b2)=10sayk=1d=b,c=aac+bd=a2+b2=102a2=2b210ithinkitdependsonchoiceofa2,b2withtheconditiona2+b2=10
Answered by Ghisom last updated on 16/Oct/24
ab+cd=0 ⇒ d=−((ab)/c)  c^2 +d^2 =10 ⇒ b^2 =((c^2 (10−c^2 ))/a^2 )  a^2 +b^2 =10 ⇒ a^4 −10a^2 −c^4 +10c^2 =0  ⇒  c=±a∨c=±(√(10−a^2 ))  ⇒ ac+bd=±2(a^2 −5)∨ac+bd=0
ab+cd=0d=abcc2+d2=10b2=c2(10c2)a2a2+b2=10a410a2c4+10c2=0c=±ac=±10a2ac+bd=±2(a25)ac+bd=0

Leave a Reply

Your email address will not be published. Required fields are marked *