Menu Close

certificate-x-1-x-2n-1-1-and-x-1-x-2n-1-1-All-established-2024-10-16-




Question Number 212519 by MrGaster last updated on 16/Oct/24
                     certificate:       (x−1)∣(x^(2n+1) −1)and(x+1)∣(x^(2n+1) +1)  All established  [2024.10.16]
certificate:(x1)(x2n+11)and(x+1)(x2n+1+1)Allestablished[2024.10.16]
Answered by mathmax last updated on 19/Oct/24
x^(2n+1) −1 =(x−1)(1+x +x^2 +...x^(2n) ) so  x−1 divise x^(2n+1) −1  montrons par recurrence que  x^(2n+1) +1 est divisible par x+1  p_n (x)=x^(2n+1) +1  p_0 (x)=x+1   (vraie) supposons que   x+1/p_n   p_(n+1) (x)=x^(2n+3) +1  =x^(2n+1) x^2 +1 but p_n =q(x+1)  =x^(2n+1) +1 ⇒x^(2n+1) =q(x+1)−1 ⇒  p_(n+1) =(q(x+1)−1)x^2 +1  =qx^2 (x+1)−(x^2 −1)  =(x+1){qx^2 −(x−1)} donc p_(n+1) est  divisible par x+1
x2n+11=(x1)(1+x+x2+x2n)sox1divisex2n+11montronsparrecurrencequex2n+1+1estdivisibleparx+1pn(x)=x2n+1+1p0(x)=x+1(vraie)supposonsquex+1/pnpn+1(x)=x2n+3+1=x2n+1x2+1butpn=q(x+1)=x2n+1+1x2n+1=q(x+1)1pn+1=(q(x+1)1)x2+1=qx2(x+1)(x21)=(x+1){qx2(x1)}doncpn+1estdivisibleparx+1

Leave a Reply

Your email address will not be published. Required fields are marked *