Menu Close

certificate-x-2n-1-Can-always-be-x-1-be-divisible-




Question Number 212513 by MrGaster last updated on 16/Oct/24
             certificate:           x^(2n) −1  Can always be x+1 be divisible
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}{n}} −\mathrm{1} \\ $$$$\mathrm{Can}\:\mathrm{always}\:\mathrm{be}\:{x}+\mathrm{1}\:\mathrm{be}\:\mathrm{divisible}\:\:\:\:\:\:\:\:\: \\ $$
Answered by A5T last updated on 16/Oct/24
x≡−1(mod x+1)⇒x^(2n) −1≡(−1)^(2n) −1(mod x+1)  ⇒x^(2n) −1≡0(mod x+1)⇒x+1∣x^(2n) −1
$${x}\equiv−\mathrm{1}\left({mod}\:{x}+\mathrm{1}\right)\Rightarrow{x}^{\mathrm{2}{n}} −\mathrm{1}\equiv\left(−\mathrm{1}\right)^{\mathrm{2}{n}} −\mathrm{1}\left({mod}\:{x}+\mathrm{1}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}{n}} −\mathrm{1}\equiv\mathrm{0}\left({mod}\:{x}+\mathrm{1}\right)\Rightarrow{x}+\mathrm{1}\mid{x}^{\mathrm{2}{n}} −\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *