Menu Close

given-isoscele-triangle-with-sides-10-and-inradius-3-how-find-base-




Question Number 212533 by emilagazade last updated on 16/Oct/24
given isoscele triangle with sides 10 and inradius 3. how find base?
givenisosceletrianglewithsides10andinradius3.howfindbase?
Answered by A5T last updated on 16/Oct/24
Let base=b ;angle between non-equal sides=θ  [△]=((10×10sin(180−2θ))/2)=((b×10×sinθ)/2)  ⇒50×2cosθ=5b⇒cosθ=(b/(20))⇒sinθ=((√(400−b^2 ))/(20))  [△]=((3(10+10+b))/2)=((10bsinθ)/2)=((b(√(400−b^2 )))/4)  ⇒120+6b=b(√(400−b^2 ))⇒b=12 or 4+2(√(19))
Letbase=b;anglebetweennonequalsides=θ[]=10×10sin(1802θ)2=b×10×sinθ250×2cosθ=5bcosθ=b20sinθ=400b220[]=3(10+10+b)2=10bsinθ2=b400b24120+6b=b400b2b=12or4+219
Commented by emilagazade last updated on 16/Oct/24
thank you a lot
thankyoualot
Answered by mr W last updated on 16/Oct/24
Commented by mr W last updated on 17/Oct/24
say x=(b/2)  ((a−x)/r)=((√(a^2 −x^2 ))/x)  ((a−x)/r^2 )=((a+x)/x^2 )  x^3 −ax^2 +r^2 x+ar^2 =0  x^3 −10x^2 +9x+90=0  (x−6)(x^2 −4x−15)=0  ⇒x=6, 2±(√(19))  ⇒b=12, 4+2(√(19))
sayx=b2axr=a2x2xaxr2=a+xx2x3ax2+r2x+ar2=0x310x2+9x+90=0(x6)(x24x15)=0x=6,2±19b=12,4+219

Leave a Reply

Your email address will not be published. Required fields are marked *