Menu Close

given-isoscele-triangle-with-sides-10-and-inradius-3-how-find-base-




Question Number 212533 by emilagazade last updated on 16/Oct/24
given isoscele triangle with sides 10 and inradius 3. how find base?
$${given}\:{isoscele}\:{triangle}\:{with}\:{sides}\:\mathrm{10}\:{and}\:{inradius}\:\mathrm{3}.\:{how}\:{find}\:{base}? \\ $$
Answered by A5T last updated on 16/Oct/24
Let base=b ;angle between non-equal sides=θ  [△]=((10×10sin(180−2θ))/2)=((b×10×sinθ)/2)  ⇒50×2cosθ=5b⇒cosθ=(b/(20))⇒sinθ=((√(400−b^2 ))/(20))  [△]=((3(10+10+b))/2)=((10bsinθ)/2)=((b(√(400−b^2 )))/4)  ⇒120+6b=b(√(400−b^2 ))⇒b=12 or 4+2(√(19))
$${Let}\:{base}={b}\:;{angle}\:{between}\:{non}-{equal}\:{sides}=\theta \\ $$$$\left[\bigtriangleup\right]=\frac{\mathrm{10}×\mathrm{10}{sin}\left(\mathrm{180}−\mathrm{2}\theta\right)}{\mathrm{2}}=\frac{{b}×\mathrm{10}×{sin}\theta}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{50}×\mathrm{2}{cos}\theta=\mathrm{5}{b}\Rightarrow{cos}\theta=\frac{{b}}{\mathrm{20}}\Rightarrow{sin}\theta=\frac{\sqrt{\mathrm{400}−{b}^{\mathrm{2}} }}{\mathrm{20}} \\ $$$$\left[\bigtriangleup\right]=\frac{\mathrm{3}\left(\mathrm{10}+\mathrm{10}+{b}\right)}{\mathrm{2}}=\frac{\mathrm{10}{bsin}\theta}{\mathrm{2}}=\frac{{b}\sqrt{\mathrm{400}−{b}^{\mathrm{2}} }}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{120}+\mathrm{6}{b}={b}\sqrt{\mathrm{400}−{b}^{\mathrm{2}} }\Rightarrow{b}=\mathrm{12}\:{or}\:\mathrm{4}+\mathrm{2}\sqrt{\mathrm{19}} \\ $$
Commented by emilagazade last updated on 16/Oct/24
thank you a lot
$${thank}\:{you}\:{a}\:{lot} \\ $$
Answered by mr W last updated on 16/Oct/24
Commented by mr W last updated on 17/Oct/24
say x=(b/2)  ((a−x)/r)=((√(a^2 −x^2 ))/x)  ((a−x)/r^2 )=((a+x)/x^2 )  x^3 −ax^2 +r^2 x+ar^2 =0  x^3 −10x^2 +9x+90=0  (x−6)(x^2 −4x−15)=0  ⇒x=6, 2±(√(19))  ⇒b=12, 4+2(√(19))
$${say}\:{x}=\frac{{b}}{\mathrm{2}} \\ $$$$\frac{{a}−{x}}{{r}}=\frac{\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{x}} \\ $$$$\frac{{a}−{x}}{{r}^{\mathrm{2}} }=\frac{{a}+{x}}{{x}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{3}} −{ax}^{\mathrm{2}} +{r}^{\mathrm{2}} {x}+{ar}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{3}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{90}=\mathrm{0} \\ $$$$\left({x}−\mathrm{6}\right)\left({x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{15}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{6},\:\mathrm{2}\pm\sqrt{\mathrm{19}} \\ $$$$\Rightarrow{b}=\mathrm{12},\:\mathrm{4}+\mathrm{2}\sqrt{\mathrm{19}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *