Menu Close

in-how-many-ways-we-can-distribute-6-distinct-balls-in-3-identical-boxes-




Question Number 212522 by Nadirhashim last updated on 16/Oct/24
  in how many ways we  can distribute 6 distinct  balls in 3 identical boxes
inhowmanywayswecandistribute6distinctballsin3identicalboxes
Answered by mehdee7396 last updated on 16/Oct/24
 6/0/0 or 5/1/0 or 4/2/0  or 4/1/1 or 3/3/0/ or 3/2/1 or 2/2/2  C(6,6)+C(5,1)C(1,1)+C(6,4)C(2,2)+C(6,4)C(2,1)C(1,1)+C(6,3)C(3,3)+C(6,3)C(3,2)C(1,1)+C(6,2)C(4,2)C(2,2)  =275 ✓
6/0/0or5/1/0or4/2/0or4/1/1or3/3/0/or3/2/1or2/2/2C(6,6)+C(5,1)C(1,1)+C(6,4)C(2,2)+C(6,4)C(2,1)C(1,1)+C(6,3)C(3,3)+C(6,3)C(3,2)C(1,1)+C(6,2)C(4,2)C(2,2)=275
Commented by mr W last updated on 21/Oct/24
it′s wrong sir.  the number of ways to distribute n  distinct objects into  n_1  groups with m_1  objects in each and  n_2  groups with m_2  objects in each  etc.  (n=n_1 m_1 +n_2 m_2 +...+n_r m_r )  is ((n!)/(Π_(k=1) ^r (m_k !)^n_k  n_k !))  therefore for example  3/2/1 ⇒((6!)/(3!2!1!))=60=C(6,3)C(3,2)C(1,1)  2/2/2 ⇒((6!)/((2!)^3 3!))=15≠C(6,2)C(4,2)C(2,2)
itswrongsir.thenumberofwaystodistributendistinctobjectsinton1groupswithm1objectsineachandn2groupswithm2objectsineachetc.(n=n1m1+n2m2++nrmr)isn!rk=1(mk!)nknk!thereforeforexample3/2/16!3!2!1!=60=C(6,3)C(3,2)C(1,1)2/2/26!(2!)33!=15C(6,2)C(4,2)C(2,2)
Answered by mr W last updated on 16/Oct/24
if the boxes may not be empty:  S(6, 3)=90 ✓  if the boxes may be empty:  S(6,3)+S(6,2)+S(6,1)=90+31+1=122 ✓
iftheboxesmaynotbeempty:S(6,3)=90iftheboxesmaybeempty:S(6,3)+S(6,2)+S(6,1)=90+31+1=122
Answered by mr W last updated on 17/Oct/24
6/0/0 ⇒1 way  5/1/0 ⇒C_1 ^6 =6 ways  4/2/0 ⇒C_2 ^6 =15 ways  3/3/0 ⇒C_3 ^6 /2=10 ways  4/1/1 ⇒((6!)/(4!(1!)^2 2!))=15 ways  3/2/1 ⇒((6!)/(3!2!1!))=60 ways  2/2/2 ⇒((6!)/((2!)^3 3!))=15 ways  totally: 122 ways ✓
6/0/01way5/1/0C16=6ways4/2/0C26=15ways3/3/0C36/2=10ways4/1/16!4!(1!)22!=15ways3/2/16!3!2!1!=60ways2/2/26!(2!)33!=15waystotally:122ways

Leave a Reply

Your email address will not be published. Required fields are marked *