Question Number 212552 by mnjuly1970 last updated on 17/Oct/24
$$ \\ $$$$\:\overset{\mathrm{Q}:} {\:}\:\mathrm{In}\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\::\:\:\:{cos}\left(\mathrm{A}\right)\:+{cos}\left(\mathrm{B}\:\right)+\:\mathrm{2}{cos}\left(\mathrm{C}\:\right)=\:\mathrm{2} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{show}\:\mathrm{that}\::\:\:\:{a}\:+\:{b}\:=\:\mathrm{2}{c}\:\:\:\:\:\:\:\:\:\:\:\blacksquare\: \\ $$$$ \\ $$
Answered by Ghisom last updated on 17/Oct/24
$${C}=\pi−\left({A}+{B}\right)\:\Rightarrow \\ $$$$\mathrm{cos}\:{A}\:+\mathrm{cos}\:{B}\:−\mathrm{cos}\:\left({A}+{B}\right)\:=\mathrm{2} \\ $$$${c}=\frac{{a}+{b}}{\mathrm{2}}\:\Rightarrow \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\mathrm{cos}\:{C}\:={c}^{\mathrm{2}} \:\mathrm{etc}.\:\mathrm{lead}\:\mathrm{to} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{cos}\:{A}\:=\frac{\mathrm{5}{b}−\mathrm{3}{a}}{\mathrm{4}{b}}\:\Rightarrow \\ $$$$\:\:\:\:\:\mathrm{sin}\:{A}\:=\frac{\sqrt{−\mathrm{3}\left({a}−\mathrm{3}{b}\right)\left(\mathrm{3}{a}−{b}\right)}}{\mathrm{4}{b}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{cos}\:{B}\:=\frac{\mathrm{5}{a}−\mathrm{3}{b}}{\mathrm{4}{a}}\:\Rightarrow \\ $$$$\:\:\:\:\:\mathrm{sin}\:{B}\:=\frac{\sqrt{−\mathrm{3}\left({a}−\mathrm{3}{b}\right)\left(\mathrm{3}{a}−{b}\right)}}{\mathrm{4}{a}} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\:\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:−\mathrm{sin}\:{A}\:\mathrm{sin}\:{B}=−\frac{\mathrm{3}{a}^{\mathrm{2}} −\mathrm{2}{ab}+\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{8}{ab}} \\ $$$$\mathrm{cos}\:\left({A}+{B}\right)\:=\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:−\mathrm{sin}\:{A}\:\mathrm{sin}\:{B} \\ $$$$\mathrm{inserting}\:\mathrm{from}\:\mathrm{above} \\ $$$$\Rightarrow\:\mathrm{true} \\ $$