Question Number 212557 by tri26112004 last updated on 17/Oct/24
Answered by Ghisom last updated on 17/Oct/24
$$\mathrm{cos}\:{x}\:={c} \\ $$$$\mathrm{sin}\:{x}\:=\sqrt{\mathrm{1}−{c}^{\mathrm{2}} } \\ $$$$\left(\sqrt{\mathrm{1}−{c}^{\mathrm{2}} }\right)^{\mathrm{8}} +{c}^{\mathrm{8}} = \\ $$$$\mathrm{2}{c}^{\mathrm{8}} −\mathrm{4}{c}^{\mathrm{6}} +\mathrm{6}{c}^{\mathrm{4}} −\mathrm{4}{c}^{\mathrm{2}} +\mathrm{1}= \\ $$$$=\mathrm{2}\left({c}^{\mathrm{4}} −{c}^{\mathrm{2}} +\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\left({c}^{\mathrm{4}} −{c}^{\mathrm{2}} +\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)= \\ $$$$\:\:\:\:\:\left[{c}^{\mathrm{4}} −{c}^{\mathrm{2}} =−{c}^{\mathrm{2}} \left(\mathrm{1}−{c}^{\mathrm{2}} \right)=−\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:=\frac{\mathrm{cos}\:\mathrm{4}{x}\:−\mathrm{1}}{\mathrm{8}}\right] \\ $$$$=\mathrm{2}\left(\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{8}}+\frac{\mathrm{7}}{\mathrm{8}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\left(\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{8}}+\frac{\mathrm{7}}{\mathrm{8}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)= \\ $$$$=\frac{\mathrm{cos}^{\mathrm{2}} \:\mathrm{4}{x}}{\mathrm{32}}+\frac{\mathrm{7cos}\:\mathrm{4}{x}}{\mathrm{16}}+\frac{\mathrm{17}}{\mathrm{32}}= \\ $$$$=\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{8}{x}}{\mathrm{64}}+\frac{\mathrm{7cos}\:\mathrm{4}{x}}{\mathrm{16}}+\frac{\mathrm{17}}{\mathrm{32}}= \\ $$$$=\frac{\mathrm{cos}\:\mathrm{8}{x}}{\mathrm{64}}+\frac{\mathrm{7cos}\:\mathrm{4}{x}}{\mathrm{16}}+\frac{\mathrm{35}}{\mathrm{64}} \\ $$