Menu Close

If-0-x-2-Prove-that-2-x-1-10-5x-4-0-




Question Number 212609 by hardmath last updated on 18/Oct/24
If   0≤x≤2  Prove that:  2^x  + 1 − (√(10,5x + 4)) ≤ 0
$$\mathrm{If}\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{2} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{1}\:−\:\sqrt{\mathrm{10},\mathrm{5x}\:+\:\mathrm{4}}\:\leqslant\:\mathrm{0} \\ $$
Answered by Frix last updated on 18/Oct/24
f(x)=2^x +1  f(x) is continuous  f′(x)=2^x ln 2 >0 ⇒ f(x) is strictly increasing  g(x)=((√(21x+8))/( (√2)))  g(x) is continuous for x≥−(8/(21))  g′(x)=((21(√2))/(4(√(21x+8))))>0 ⇒ g(x) is strictly increasing    f(0)=g(0)=2  f(2)=g(2)=5  f(1)=3; g(1)=((√(58))/2)  g(1)>f(1)  ⇒ f(x)≤g(x); 0≤x≤2
$${f}\left({x}\right)=\mathrm{2}^{{x}} +\mathrm{1} \\ $$$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous} \\ $$$${f}'\left({x}\right)=\mathrm{2}^{{x}} \mathrm{ln}\:\mathrm{2}\:>\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{strictly}\:\mathrm{increasing} \\ $$$${g}\left({x}\right)=\frac{\sqrt{\mathrm{21}{x}+\mathrm{8}}}{\:\sqrt{\mathrm{2}}} \\ $$$${g}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{for}\:{x}\geqslant−\frac{\mathrm{8}}{\mathrm{21}} \\ $$$${g}'\left({x}\right)=\frac{\mathrm{21}\sqrt{\mathrm{2}}}{\mathrm{4}\sqrt{\mathrm{21}{x}+\mathrm{8}}}>\mathrm{0}\:\Rightarrow\:{g}\left({x}\right)\:\mathrm{is}\:\mathrm{strictly}\:\mathrm{increasing} \\ $$$$ \\ $$$${f}\left(\mathrm{0}\right)={g}\left(\mathrm{0}\right)=\mathrm{2} \\ $$$${f}\left(\mathrm{2}\right)={g}\left(\mathrm{2}\right)=\mathrm{5} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{3};\:{g}\left(\mathrm{1}\right)=\frac{\sqrt{\mathrm{58}}}{\mathrm{2}} \\ $$$${g}\left(\mathrm{1}\right)>{f}\left(\mathrm{1}\right) \\ $$$$\Rightarrow\:{f}\left({x}\right)\leqslant{g}\left({x}\right);\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *