Menu Close

lim-n-1-2-n-2-1-2-2-n-2-2-3-2-n-2-3-n-2-n-2-n-n-3-




Question Number 212595 by MrGaster last updated on 18/Oct/24
lim_(n→∞) ((1^2 /(n^2 +1))+(2^2 /(n^2 +2))+(3^2 /(n^2 +3))+…+(n^2 /(n^2 +n))−(n/3))=?
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{2}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{2}}+\frac{\mathrm{3}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{3}}+\ldots+\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} +{n}}−\frac{{n}}{\mathrm{3}}\right)=? \\ $$
Answered by Berbere last updated on 18/Oct/24
=Σ(k^2 /(n^2 +n))≤Σ(k^2 /(n^2 +k))−(n/(3 ))≤Σ_(k=1) ^n (k^2 /n^2 )−(n/3)    U_n =((n(2n+1)(n+1))/(6(n^2 +n)))−(n/3) ≤S_n ≤(1/n^2 )(2n+1)n(n+1)−(n/3)=V_n   U_n →0;v_n →0⇒S_n →0
$$=\Sigma\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} +{n}}\leqslant\Sigma\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} +{k}}−\frac{{n}}{\mathrm{3}\:}\leqslant\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }−\frac{{n}}{\mathrm{3}}\:\: \\ $$$${U}_{{n}} =\frac{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{6}\left({n}^{\mathrm{2}} +{n}\right)}−\frac{{n}}{\mathrm{3}}\:\leqslant{S}_{{n}} \leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\mathrm{2}{n}+\mathrm{1}\right){n}\left({n}+\mathrm{1}\right)−\frac{{n}}{\mathrm{3}}={V}_{{n}} \\ $$$${U}_{{n}} \rightarrow\mathrm{0};{v}_{{n}} \rightarrow\mathrm{0}\Rightarrow{S}_{{n}} \rightarrow\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *