Menu Close

Solve-the-differential-equation-dy-dx-cos-x-y-




Question Number 212612 by hardmath last updated on 18/Oct/24
Solve the differential equation:  (dy/dx)  =  cos(x + y)
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:\:=\:\:\mathrm{cos}\left(\mathrm{x}\:+\:\mathrm{y}\right) \\ $$
Answered by mr W last updated on 19/Oct/24
let t=x+y  (dt/dx)=1+(dy/dx)  (dt/dx)−1=cos t  (dt/(cos t+1))=dx  ∫(dt/(cos t+1))=∫dx  ∫(dt/(2 cos^2  (t/2)))=∫dx  tan (t/2)=x+C  t=2 tan^(−1) (x+C)  x+y=2 tan^(−1) (x+C)  ⇒y=2 tan^(−1) (x+C)−x ✓
$${let}\:{t}={x}+{y} \\ $$$$\frac{{dt}}{{dx}}=\mathrm{1}+\frac{{dy}}{{dx}} \\ $$$$\frac{{dt}}{{dx}}−\mathrm{1}=\mathrm{cos}\:{t} \\ $$$$\frac{{dt}}{\mathrm{cos}\:{t}+\mathrm{1}}={dx} \\ $$$$\int\frac{{dt}}{\mathrm{cos}\:{t}+\mathrm{1}}=\int{dx} \\ $$$$\int\frac{{dt}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{{t}}{\mathrm{2}}}=\int{dx} \\ $$$$\mathrm{tan}\:\frac{{t}}{\mathrm{2}}={x}+{C} \\ $$$${t}=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left({x}+{C}\right) \\ $$$${x}+{y}=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left({x}+{C}\right) \\ $$$$\Rightarrow{y}=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left({x}+{C}\right)−{x}\:\checkmark \\ $$
Commented by hardmath last updated on 19/Oct/24
thankyou dearprofessor
$$\mathrm{thankyou}\:\mathrm{dearprofessor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *