Menu Close

let-f-x-1-x-a-x-b-x-c-let-a-b-c-R-a-lt-b-lt-c-D-f-x-a-b-c-prove-a-b-f-x-dx-c-f-x-dx-




Question Number 212626 by Ghisom last updated on 19/Oct/24
let f(x)=(1/( (√((x−a)(x−b)(x−c)))))  let a, b, c ∈R ∧a<b<c  ⇒ D(f(x))=(a, b)∪(c, ∞)  prove ∫_a ^b f(x)dx=∫_c ^∞ f(x)dx
$$\mathrm{let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)}} \\ $$$$\mathrm{let}\:{a},\:{b},\:{c}\:\in\mathbb{R}\:\wedge{a}<{b}<{c} \\ $$$$\Rightarrow\:{D}\left({f}\left({x}\right)\right)=\left({a},\:{b}\right)\cup\left({c},\:\infty\right) \\ $$$$\mathrm{prove}\:\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}=\underset{{c}} {\overset{\infty} {\int}}{f}\left({x}\right){dx} \\ $$
Answered by MrGaster last updated on 02/Nov/24
∫_a ^b f(x)dx=∫_a ^b (1/( (√((x−a)(x−b)(x−c)))))dx  ∫_c ^∞ f(x)dx=∫_c ^∞ (1/( (√((x−a)(x−b)(x−c)))))dxx=  a+(b−a)tdx=(b−a)dt  ∫_a ^b (1/( (√((x−a(x−b(x−c)))))dx=∫_0 ^1 (((b−a))/( (√((b−a)(b−a)t(b−a)(1−t)(b−a)(1−((a+(b−a)t−c)/(b−a)))))))dt  =∫_0 ^1 (1/( (√(t(1−t)(1−((a−c)/(b−a))−t)))))dtx=c+(x−c)t′dx=(x−c)dt′  ∫_c ^∞ (1/( (√((x−a)(x−b)(x−c)))))dx=∫_0 ^∞ (((x−c))/( (√((x−c)(x−c)t′(x−c)(1−t′)(x−c)))))dt′     =∫_0 ^∞ (1/( (√(t′(1−t′)(1+((x−c)/(c−a))−t′)))))dt′  t′=1−tdt′=−dt  ∫_0 ^∞ (1/( (√(t′(1−t′)(1+((x−c)/(c−a))−t′)))))dt′=∫_0 ^(−∞) ((−1)/( (√((1−t)(t)(1+((x−c)/(c−a))−1+t)))))dt  =∫_(−∞) ^1 (1/( (√((1−t)(t)(1+((x−c)/(c−a))−1+t)))))dt=∫_(−∞) ^1 (1/( (√((1−t)(t)(t+((x−c)/(c−a)))))))dt=∫_(−∞) ^1 (1/( (√((1−t)(t)(t+((b−c)/(b−a)))))))dt=∫_0 ^1 (1/( (√(t(1−t)(1−((a−c)/(b−a)))))))dt  ∫_a ^b f(x)dx=∫_c ^∞ f(x)dx
$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} \frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)}}{dx} \\ $$$$\int_{{c}} ^{\infty} {f}\left({x}\right){dx}=\int_{{c}} ^{\infty} \frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)}}{dxx}= \\ $$$${a}+\left({b}−{a}\right){tdx}=\left({b}−{a}\right){dt} \\ $$$$\int_{{a}} ^{{b}} \frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\left({x}−{b}\left({x}−{c}\right)\right.\right.}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({b}−{a}\right)}{\:\sqrt{\left({b}−{a}\right)\left({b}−{a}\right){t}\left({b}−{a}\right)\left(\mathrm{1}−{t}\right)\left({b}−{a}\right)\left(\mathrm{1}−\frac{{a}+\left({b}−{a}\right){t}−{c}}{{b}−{a}}\right)}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{{t}\left(\mathrm{1}−{t}\right)\left(\mathrm{1}−\frac{{a}−{c}}{{b}−{a}}−{t}\right)}}{dtx}={c}+\left({x}−{c}\right){t}'{dx}=\left({x}−{c}\right){dt}' \\ $$$$\int_{{c}} ^{\infty} \frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)}}{dx}=\int_{\mathrm{0}} ^{\infty} \frac{\left({x}−{c}\right)}{\:\sqrt{\left({x}−{c}\right)\left({x}−{c}\right){t}'\left({x}−{c}\right)\left(\mathrm{1}−{t}'\right)\left({x}−{c}\right)}}{dt}' \\ $$$$\: \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\:\sqrt{{t}'\left(\mathrm{1}−{t}'\right)\left(\mathrm{1}+\frac{{x}−{c}}{{c}−{a}}−{t}'\right)}}{dt}' \\ $$$${t}'=\mathrm{1}−{tdt}'=−{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\:\sqrt{{t}'\left(\mathrm{1}−{t}'\right)\left(\mathrm{1}+\frac{{x}−{c}}{{c}−{a}}−{t}'\right)}}{dt}'=\int_{\mathrm{0}} ^{−\infty} \frac{−\mathrm{1}}{\:\sqrt{\left(\mathrm{1}−{t}\right)\left({t}\right)\left(\mathrm{1}+\frac{{x}−{c}}{{c}−{a}}−\mathrm{1}+{t}\right)}}{dt} \\ $$$$=\int_{−\infty} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}−{t}\right)\left({t}\right)\left(\mathrm{1}+\frac{{x}−{c}}{{c}−{a}}−\mathrm{1}+{t}\right)}}{dt}=\int_{−\infty} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}−{t}\right)\left({t}\right)\left({t}+\frac{{x}−{c}}{{c}−{a}}\right)}}{dt}=\int_{−\infty} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}−{t}\right)\left({t}\right)\left({t}+\frac{{b}−{c}}{{b}−{a}}\right)}}{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{{t}\left(\mathrm{1}−{t}\right)\left(\mathrm{1}−\frac{{a}−{c}}{{b}−{a}}\right)}}{dt} \\ $$$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{c}} ^{\infty} {f}\left({x}\right){dx} \\ $$$$\: \\ $$
Commented by Ghisom last updated on 02/Nov/24
you write  a+(b−a)tdx=(b−a)dt  but this makes no sense. please correct  and clarify your answer.
$$\mathrm{you}\:\mathrm{write} \\ $$$${a}+\left({b}−{a}\right){tdx}=\left({b}−{a}\right){dt} \\ $$$$\mathrm{but}\:\mathrm{this}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense}.\:\mathrm{please}\:\mathrm{correct} \\ $$$$\mathrm{and}\:\mathrm{clarify}\:\mathrm{your}\:\mathrm{answer}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *