Menu Close

lim-n-1-2-n-2-1-2-3-n-2-2-n-n-1-n-2-n-




Question Number 212627 by MrGaster last updated on 19/Oct/24
  lim_(n→∞) (((√(1∙2))/(n^2 +1))+((√(2∙3))/(n^2 +2))+…+((√(n(n+1)))/(n^2 +n)))
$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{1}\centerdot\mathrm{2}}}{{n}^{\mathrm{2}} +\mathrm{1}}+\frac{\sqrt{\mathrm{2}\centerdot\mathrm{3}}}{{n}^{\mathrm{2}} +\mathrm{2}}+\ldots+\frac{\sqrt{{n}\left({n}+\mathrm{1}\right)}}{{n}^{\mathrm{2}} +{n}}\right) \\ $$
Answered by mehdee7396 last updated on 19/Oct/24
(1/(n^2 +n))+(2/(n^2 +n))+(3/(n^2 +n))+...+(n/(n^2 +n))<S_n     ⇒((n(n+1))/(2(n^2 +n)))<S_n   S_n <(2/n^2 )+(3/n^2 )+(4/n^2 )+...+((n+1)/n^2 )  ⇒S_n <((n(n+3))/(2n^2 ))  ⇒((n(n+1))/(2(n^2 +n)))<S_n <((n(n+3))/(2n^2 ))  ⇒lim_(n→∞) S_n =(1/2)  ✓
$$\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{n}}+\frac{\mathrm{2}}{{n}^{\mathrm{2}} +{n}}+\frac{\mathrm{3}}{{n}^{\mathrm{2}} +{n}}+…+\frac{{n}}{{n}^{\mathrm{2}} +{n}}<{S}_{{n}} \:\: \\ $$$$\Rightarrow\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}\left({n}^{\mathrm{2}} +{n}\right)}<{S}_{{n}} \\ $$$${S}_{{n}} <\frac{\mathrm{2}}{{n}^{\mathrm{2}} }+\frac{\mathrm{3}}{{n}^{\mathrm{2}} }+\frac{\mathrm{4}}{{n}^{\mathrm{2}} }+…+\frac{{n}+\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\Rightarrow{S}_{{n}} <\frac{{n}\left({n}+\mathrm{3}\right)}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}\left({n}^{\mathrm{2}} +{n}\right)}<{S}_{{n}} <\frac{{n}\left({n}+\mathrm{3}\right)}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} {S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:\checkmark \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *