Menu Close

prove-the-Following-Equation-J-z-and-Y-z-are-Bessel-function-J-1-2-z-1-1-Y-1-2-z-Y-1-2-z-1-J-1-2-z-Z-Do-Not-prove-using-the-equations-pres




Question Number 212648 by issac last updated on 20/Oct/24
prove the Following Equation.   J_ν (z) and Y_ν (z) are  Bessel function  J_(−ν−(1/2)) (z)=(−1)^(ν+1) Y_(ν+(1/2)) (z)  Y_(−ν−(1/2)) (z)=(−1)^ν J_(ν+(1/2)) (z)  ν∈Z^+   Do Not prove using the equations  presented above
$$\mathrm{prove}\:\mathrm{the}\:\mathrm{Following}\:\mathrm{Equation}. \\ $$$$\:{J}_{\nu} \left({z}\right)\:\mathrm{and}\:{Y}_{\nu} \left({z}\right)\:\mathrm{are}\:\:\mathrm{Bessel}\:\mathrm{function} \\ $$$${J}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)=\left(−\mathrm{1}\right)^{\nu+\mathrm{1}} {Y}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right) \\ $$$${Y}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)=\left(−\mathrm{1}\right)^{\nu} {J}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right) \\ $$$$\nu\in\mathbb{Z}^{+} \\ $$$$\mathrm{Do}\:\mathrm{Not}\:\mathrm{prove}\:\mathrm{using}\:\mathrm{the}\:\mathrm{equations} \\ $$$$\mathrm{presented}\:\mathrm{above} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *