Question Number 212654 by Spillover last updated on 20/Oct/24
Answered by mr W last updated on 20/Oct/24
Commented by mr W last updated on 20/Oct/24
$${R}={a}+{b} \\ $$$$\left({a}+{r}\right)^{\mathrm{2}} −\left({a}−{r}\right)^{\mathrm{2}} =\left({R}−{r}\right)^{\mathrm{2}} −\left(\mathrm{2}{a}−{R}−{r}\right)^{\mathrm{2}} \\ $$$${Rr}={a}\left({R}−{a}\right) \\ $$$$\Rightarrow{r}=\frac{{a}\left({R}−{a}\right)}{{R}}=\frac{{ab}}{{a}+{b}}=\frac{\mathrm{6}×\mathrm{3}}{\mathrm{6}+\mathrm{3}}=\mathrm{2} \\ $$$$\Rightarrow{both}\:{blue}\:{circles}\:{are}\:{of}\:{same}\:{size}. \\ $$$$\Sigma{area}\:=\mathrm{2}\pi{r}^{\mathrm{2}} \\ $$$$\:\:\:=\frac{\mathrm{2}\pi\left({ab}\right)^{\mathrm{2}} }{\left({a}+{b}\right)^{\mathrm{2}} }=\frac{\mathrm{2}\pi\left(\mathrm{6}×\mathrm{3}\right)^{\mathrm{2}} }{\left(\mathrm{6}+\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{8}\pi \\ $$
Commented by Frix last updated on 20/Oct/24
$$\mathrm{I}\:\mathrm{think}\:{r}=\mathrm{2}\:\Rightarrow\:\mathrm{answer}\:\mathrm{8}\pi \\ $$
Commented by mr W last updated on 20/Oct/24
$${it}'{s}\:{fixed}.\:{thanks}! \\ $$
Commented by Spillover last updated on 20/Oct/24
$${great} \\ $$