Menu Close

a-b-c-N-Show-that-ab-lt-c-a-b-c-




Question Number 212741 by mathocean1 last updated on 22/Oct/24
a, b,c ∈ N^∗     Show that ab<c ⇒ a+b≤c
$${a},\:{b},{c}\:\in\:\mathbb{N}^{\ast} \\ $$$$ \\ $$$${Show}\:{that}\:{ab}<{c}\:\Rightarrow\:{a}+{b}\leqslant{c} \\ $$$$ \\ $$
Answered by A5T last updated on 22/Oct/24
WLOG; let a≤b  ⇒2a=a+a≤a+b≤b+b=2b≤ab<c when a≥2  ⇒a+b<c  when a=1; ab=b<c⇒b+1≤c≡a+b≤c
$${WLOG};\:{let}\:{a}\leqslant{b} \\ $$$$\Rightarrow\mathrm{2}{a}={a}+{a}\leqslant{a}+{b}\leqslant{b}+{b}=\mathrm{2}{b}\leqslant{ab}<{c}\:{when}\:{a}\geqslant\mathrm{2} \\ $$$$\Rightarrow{a}+{b}<{c} \\ $$$${when}\:{a}=\mathrm{1};\:{ab}={b}<{c}\Rightarrow{b}+\mathrm{1}\leqslant{c}\equiv{a}+{b}\leqslant{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *