Question Number 212721 by Spillover last updated on 22/Oct/24
Answered by A5T last updated on 22/Oct/24
Commented by A5T last updated on 22/Oct/24
$${In}\left[{ABC}\right];\:{tan}\theta=\frac{{R}}{{R}+\mathrm{2}{r}};{AC}=\sqrt{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{Rr}} \\ $$$$\mathrm{2}{r}\left({R}+\mathrm{2}{r}\right)={MC}×\sqrt{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{Rr}} \\ $$$${In}\left[{MNC}\right];{tan}\theta=\frac{{MN}}{{MC}}\Rightarrow{MN}=\frac{\mathrm{2}{Rr}}{\:\sqrt{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{Rr}}} \\ $$$$\mathrm{2}{r}\left(\mathrm{2}{r}+\mathrm{2}{R}\right)={LC}×\sqrt{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{Rr}} \\ $$$$\Rightarrow{LM}={LC}−{MC}=\frac{\mathrm{2}{r}\left(\mathrm{2}{r}+\mathrm{2}{R}−{R}−\mathrm{2}{r}\right)}{\:\sqrt{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{Rr}}}={MN} \\ $$$$\Rightarrow\left[{LMN}\right]=\frac{{LM}×{MN}}{\mathrm{2}}=\frac{{MN}^{\mathrm{2}} }{\mathrm{2}}=\frac{{R}^{\mathrm{2}} {r}^{\mathrm{2}} }{{R}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{2}} +\mathrm{2}{Rr}} \\ $$
Commented by Spillover last updated on 23/Oct/24
$${great}\:{work}.{thanks} \\ $$
Answered by mr W last updated on 22/Oct/24
Commented by mr W last updated on 22/Oct/24
$${AB}=\sqrt{{R}^{\mathrm{2}} +\left({R}+\mathrm{2}{r}\right)^{\mathrm{2}} } \\ $$$$\frac{{AL}}{\mathrm{2}{R}}=\frac{{R}}{{AB}}\:\Rightarrow{AL}=\frac{\mathrm{2}{R}^{\mathrm{2}} }{{AB}} \\ $$$$\frac{{MB}}{\mathrm{2}{r}}=\frac{{R}+\mathrm{2}{r}}{{AB}}\:\Rightarrow{MB}=\frac{\mathrm{2}{r}\left({R}+\mathrm{2}{r}\right)}{{AB}} \\ $$$$\frac{{NM}}{\mathrm{2}{r}}=\frac{{R}}{{AB}}\:\Rightarrow{NM}=\frac{\mathrm{2}{Rr}}{{AB}} \\ $$$$\Delta{LMN}=\frac{\left({AB}−{AL}−{MB}\right)×{NM}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({AB}−\frac{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{2}{r}\left({R}+\mathrm{2}{r}\right)}{{AB}}\right)×\frac{\mathrm{2}{Rr}}{{AB}} \\ $$$$=\frac{{Rr}\left({R}^{\mathrm{2}} +\left({R}+\mathrm{2}{r}\right)^{\mathrm{2}} −\mathrm{2}{R}^{\mathrm{2}} −\mathrm{2}{r}\left({R}+\mathrm{2}{r}\right)\right)}{{R}^{\mathrm{2}} +\left({R}+\mathrm{2}{r}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}{R}^{\mathrm{2}} {r}^{\mathrm{2}} }{{R}^{\mathrm{2}} +\left({R}+\mathrm{2}{r}\right)^{\mathrm{2}} }=\frac{{R}^{\mathrm{2}} {r}^{\mathrm{2}} }{{R}^{\mathrm{2}} +\mathrm{2}{Rr}+\mathrm{2}{r}^{\mathrm{2}} } \\ $$
Commented by Spillover last updated on 23/Oct/24
$${great}\:{work}.{thanks} \\ $$