Menu Close

i-generalized-Bessel-function-s-Laplace-Transform-L-TJ-z-s-s-2-1-s-2-1-s-0-R-L-T-Y-z-cot-pi-s-s-2-1-s-2-1-csc-pi-s-s-2-1




Question Number 212765 by issac last updated on 23/Oct/24
i  generalized Bessel function′s  Laplace Transform  L.TJ_ν (z)=(((s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1)))) , s∈[0,∞) , ν∈R  L.T Y_ν (z)=((cot(πν)(s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1))))−((csc(πν)(s+(√(s^2 +1)))^ν )/( (√(s^2 +1))))  s∈[0,∞) , ν∈R^+ \{0,Z^+ }  but.... i can′t explain why L.T Y_ν (z)  is undefined when ν∈Z^+ \{0}.....  Help me.....!!!
igeneralizedBesselfunctionsLaplaceTransformL.TJν(z)=(s+s2+1)νs2+1,s[0,),νRL.TYν(z)=cot(πν)(s+s2+1)νs2+1csc(πν)(s+s2+1)νs2+1s[0,),νR+{0,Z+}but.icantexplainwhyL.TYν(z)isundefinedwhenνZ+{0}..Helpme..!!!
Answered by Frix last updated on 23/Oct/24
  cot πν =(1/(tan πν)) ⇒ tan πν ≠0 ⇒ ν≠n∀n∈Z  csc πν =(1/(sin πν)) ⇒ sin πν ≠0 ⇒ ν≠n∀n∈Z
cotπν=1tanπνtanπν0νnnZcscπν=1sinπνsinπν0νnnZ
Commented by Ghisom last updated on 24/Oct/24
let α∈Z,  f_α (x)=(1/((1−α^2 )(1−x^2 ))) ⇒ f_α (x)  is not defind for x=±1 or α=±. this means,  f_α (x) does exist for α≠±1 but with α=±1  the  function is not defined anywhere:  f_(−1) (x)=f_1 (x)=(1/0). you cannot even say  f_(±1) (x)=±∞ because there′s no limit for  α∈Z
letαZ,fα(x)=1(1α2)(1x2)fα(x)isnotdefindforx=±1orα=±.thismeans,fα(x)doesexistforα±1butwithα=±1thefunctionisnotdefinedanywhere:f1(x)=f1(x)=10.youcannotevensayf±1(x)=±becausetheresnolimitforαZ

Leave a Reply

Your email address will not be published. Required fields are marked *