Menu Close

Let-f-x-There-is-a-secondorder-continuoust-derivaive-t-x-2-y-2-g-x-y-f-1-r-ask-2-g-x-2-2-g-y-2-




Question Number 212788 by MrGaster last updated on 24/Oct/24
  Let f(x) There is a secondorder continuoust  derivaive,t=(√(x^2 +y^2 )),g(x,y)=f((1/r)),ask (∂^2 g/∂x^2 )+(∂^2 g/∂y^2 ).
$$ \\ $$$${Let}\:{f}\left({x}\right)\:\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{secondorder}\:\mathrm{continuoust} \\ $$$$\mathrm{derivaive},{t}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} },{g}\left({x},{y}\right)={f}\left(\frac{\mathrm{1}}{{r}}\right),\mathrm{ask}\:\frac{\partial^{\mathrm{2}} {g}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {g}}{\partial{y}^{\mathrm{2}} }. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *