solution-to-Q212752- Tinku Tara October 25, 2024 Mechanics 0 Comments FacebookTweetPin Question Number 212867 by mr W last updated on 25/Oct/24 solutiontoQ212752 Commented by mr W last updated on 26/Oct/24 Commented by mr W last updated on 28/Oct/24 assumea⩾bAF2=l2+c2−2clcosθAF2=a2+b2−2abcos(α+β)cos(α+β)=a2+b2−l2−c2+2lccosθ2ab⇒sin(α+β)=1−(a2+b2−l2−c2+2lccosθ2ab)2OC=hsinα0.5l=sin(90°−α−θ)h=cos(α+θ)hsinβ0.5l=sin(90°−β+θ)h=cos(β−θ)hh=lcos(α+θ)2sinα=lcos(β−θ)2sinβsinαsinβ=cos(α+θ)cos(β−θ)=cosαcosθ−sinαsinθcosβcosθ+sinβsinθ⇒1tanα−1tanβ=2tanθsinφc=sinθAFsinφ=csinθl2+c2−2clcosθ⇒φ=sin−1csinθl2+c2−2clcosθsin(90°−β+φ+θ)a=sin(90°−α−φ−θ)b=sin(α+β)AFcos(β−φ−θ)a=cos(α+φ+θ)b=1λwithλ=AFsin(α+β)=l2+c2−2clcosθ1−(a2+b2−l2−c2+2lccosθ2ab)2cos(α+φ+θ)=bλ⇒α=cos−1bλ−φ−θcos(β−φ−θ)=aλ⇒β=cos−1aλ+φ+θ⇒1tan(cos−1bλ−φ−θ)−1tan(cos−1aλ+φ+θ)=2tanθwecansolvethisequationtogetθ.Tasinβ=Tbsinα=mgsin(α+β)⇒Ta=mgsinβsin(α+β)⇒Tb=mgsinαsin(α+β) Commented by mr W last updated on 28/Oct/24 Commented by mr W last updated on 28/Oct/24 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-1-1-x-x-2-e-x-Next Next post: Question-212834 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.