Menu Close

solution-to-Q212752-




Question Number 212867 by mr W last updated on 25/Oct/24
solution to Q212752
solutiontoQ212752
Commented by mr W last updated on 26/Oct/24
Commented by mr W last updated on 28/Oct/24
assume a≥b  AF^2 =l^2 +c^2 −2cl cos θ  AF^2 =a^2 +b^2 −2ab cos (α+β)  cos (α+β)=((a^2 +b^2 −l^2 −c^2 +2lc cos θ)/(2ab))  ⇒sin (α+β)=(√(1−(((a^2 +b^2 −l^2 −c^2 +2lc cos θ)/(2ab)))^2 ))     OC=h  ((sin α)/(0.5l))=((sin (90°−α−θ))/h)=((cos (α+θ))/h)    ((sin β)/(0.5l))=((sin (90°−β+θ))/h)=((cos (β−θ))/h)    h=((l cos (α+θ))/(2 sin α))=((l cos (β−θ))/(2 sin β))  ((sin α)/(sin β))=((cos (α+θ))/(cos (β−θ)))=((cos α cos θ−sin α sin θ)/(cos β cos θ+sin β sin θ))  ⇒(1/(tan α))−(1/(tan β))=2 tan θ    ((sin ϕ)/c)=((sin θ)/(AF))  sin ϕ=((c sin θ)/( (√(l^2 +c^2 −2cl cos θ))))  ⇒ϕ=sin^(−1) ((c sin θ)/( (√(l^2 +c^2 −2cl cos θ))))    ((sin (90°−β+ϕ+θ))/a)=((sin (90°−α−ϕ−θ))/b)=((sin (α+β))/(AF))  ((cos (β−ϕ−θ))/a)=((cos (α+ϕ+θ))/b)=(1/λ)  with λ=((AF)/(sin (α+β)))=(√((l^2 +c^2 −2cl cos θ)/(1−(((a^2 +b^2 −l^2 −c^2 +2lc cos θ)/(2ab)))^2 )))  cos (α+ϕ+θ)=(b/λ)   ⇒α=cos^(−1) (b/λ)−ϕ−θ  cos (β−ϕ−θ)=(a/λ)   ⇒β=cos^(−1) (a/λ)+ϕ+θ    ⇒(1/(tan (cos^(−1) (b/λ)−ϕ−θ)))−(1/(tan (cos^(−1) (a/λ)+ϕ+θ)))=2 tan θ  we can solve this equation to get θ.    (T_a /(sin β))=(T_b /(sin α))=((mg)/(sin (α+β)))  ⇒T_a =((mg sin β)/(sin (α+β)))  ⇒T_b =((mg sin α)/(sin (α+β)))
assumeabAF2=l2+c22clcosθAF2=a2+b22abcos(α+β)cos(α+β)=a2+b2l2c2+2lccosθ2absin(α+β)=1(a2+b2l2c2+2lccosθ2ab)2OC=hsinα0.5l=sin(90°αθ)h=cos(α+θ)hsinβ0.5l=sin(90°β+θ)h=cos(βθ)hh=lcos(α+θ)2sinα=lcos(βθ)2sinβsinαsinβ=cos(α+θ)cos(βθ)=cosαcosθsinαsinθcosβcosθ+sinβsinθ1tanα1tanβ=2tanθsinφc=sinθAFsinφ=csinθl2+c22clcosθφ=sin1csinθl2+c22clcosθsin(90°β+φ+θ)a=sin(90°αφθ)b=sin(α+β)AFcos(βφθ)a=cos(α+φ+θ)b=1λwithλ=AFsin(α+β)=l2+c22clcosθ1(a2+b2l2c2+2lccosθ2ab)2cos(α+φ+θ)=bλα=cos1bλφθcos(βφθ)=aλβ=cos1aλ+φ+θ1tan(cos1bλφθ)1tan(cos1aλ+φ+θ)=2tanθwecansolvethisequationtogetθ.Tasinβ=Tbsinα=mgsin(α+β)Ta=mgsinβsin(α+β)Tb=mgsinαsin(α+β)
Commented by mr W last updated on 28/Oct/24
Commented by mr W last updated on 28/Oct/24

Leave a Reply

Your email address will not be published. Required fields are marked *