Question Number 212867 by mr W last updated on 25/Oct/24
$${solution}\:{to}\:{Q}\mathrm{212752} \\ $$
Commented by mr W last updated on 26/Oct/24
Commented by mr W last updated on 28/Oct/24
$${assume}\:{a}\geqslant{b} \\ $$$${AF}^{\mathrm{2}} ={l}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{cl}\:\mathrm{cos}\:\theta \\ $$$${AF}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\alpha+\beta\right) \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{l}^{\mathrm{2}} −{c}^{\mathrm{2}} +\mathrm{2}{lc}\:\mathrm{cos}\:\theta}{\mathrm{2}{ab}} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\alpha+\beta\right)=\sqrt{\mathrm{1}−\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{l}^{\mathrm{2}} −{c}^{\mathrm{2}} +\mathrm{2}{lc}\:\mathrm{cos}\:\theta}{\mathrm{2}{ab}}\right)^{\mathrm{2}} }\: \\ $$$$ \\ $$$${OC}={h} \\ $$$$\frac{\mathrm{sin}\:\alpha}{\mathrm{0}.\mathrm{5}{l}}=\frac{\mathrm{sin}\:\left(\mathrm{90}°−\alpha−\theta\right)}{{h}}=\frac{\mathrm{cos}\:\left(\alpha+\theta\right)}{{h}}\:\: \\ $$$$\frac{\mathrm{sin}\:\beta}{\mathrm{0}.\mathrm{5}{l}}=\frac{\mathrm{sin}\:\left(\mathrm{90}°−\beta+\theta\right)}{{h}}=\frac{\mathrm{cos}\:\left(\beta−\theta\right)}{{h}}\:\: \\ $$$${h}=\frac{{l}\:\mathrm{cos}\:\left(\alpha+\theta\right)}{\mathrm{2}\:\mathrm{sin}\:\alpha}=\frac{{l}\:\mathrm{cos}\:\left(\beta−\theta\right)}{\mathrm{2}\:\mathrm{sin}\:\beta} \\ $$$$\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\beta}=\frac{\mathrm{cos}\:\left(\alpha+\theta\right)}{\mathrm{cos}\:\left(\beta−\theta\right)}=\frac{\mathrm{cos}\:\alpha\:\mathrm{cos}\:\theta−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta}{\mathrm{cos}\:\beta\:\mathrm{cos}\:\theta+\mathrm{sin}\:\beta\:\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}−\frac{\mathrm{1}}{\mathrm{tan}\:\beta}=\mathrm{2}\:\mathrm{tan}\:\theta \\ $$$$ \\ $$$$\frac{\mathrm{sin}\:\varphi}{{c}}=\frac{\mathrm{sin}\:\theta}{{AF}} \\ $$$$\mathrm{sin}\:\varphi=\frac{{c}\:\mathrm{sin}\:\theta}{\:\sqrt{{l}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{cl}\:\mathrm{cos}\:\theta}} \\ $$$$\Rightarrow\varphi=\mathrm{sin}^{−\mathrm{1}} \frac{{c}\:\mathrm{sin}\:\theta}{\:\sqrt{{l}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{cl}\:\mathrm{cos}\:\theta}} \\ $$$$ \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{90}°−\beta+\varphi+\theta\right)}{{a}}=\frac{\mathrm{sin}\:\left(\mathrm{90}°−\alpha−\varphi−\theta\right)}{{b}}=\frac{\mathrm{sin}\:\left(\alpha+\beta\right)}{{AF}} \\ $$$$\frac{\mathrm{cos}\:\left(\beta−\varphi−\theta\right)}{{a}}=\frac{\mathrm{cos}\:\left(\alpha+\varphi+\theta\right)}{{b}}=\frac{\mathrm{1}}{\lambda} \\ $$$${with}\:\lambda=\frac{{AF}}{\mathrm{sin}\:\left(\alpha+\beta\right)}=\sqrt{\frac{{l}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{cl}\:\mathrm{cos}\:\theta}{\mathrm{1}−\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{l}^{\mathrm{2}} −{c}^{\mathrm{2}} +\mathrm{2}{lc}\:\mathrm{cos}\:\theta}{\mathrm{2}{ab}}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\:\left(\alpha+\varphi+\theta\right)=\frac{{b}}{\lambda}\: \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{{b}}{\lambda}−\varphi−\theta \\ $$$$\mathrm{cos}\:\left(\beta−\varphi−\theta\right)=\frac{{a}}{\lambda}\: \\ $$$$\Rightarrow\beta=\mathrm{cos}^{−\mathrm{1}} \frac{{a}}{\lambda}+\varphi+\theta \\ $$$$ \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}\:\left(\mathrm{cos}^{−\mathrm{1}} \frac{{b}}{\lambda}−\varphi−\theta\right)}−\frac{\mathrm{1}}{\mathrm{tan}\:\left(\mathrm{cos}^{−\mathrm{1}} \frac{{a}}{\lambda}+\varphi+\theta\right)}=\mathrm{2}\:\mathrm{tan}\:\theta \\ $$$${we}\:{can}\:{solve}\:{this}\:{equation}\:{to}\:{get}\:\theta. \\ $$$$ \\ $$$$\frac{{T}_{{a}} }{\mathrm{sin}\:\beta}=\frac{{T}_{{b}} }{\mathrm{sin}\:\alpha}=\frac{{mg}}{\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$$\Rightarrow{T}_{{a}} =\frac{{mg}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$$\Rightarrow{T}_{{b}} =\frac{{mg}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$
Commented by mr W last updated on 28/Oct/24
Commented by mr W last updated on 28/Oct/24