Menu Close

Pls-i-need-a-help-from-Ordinary-differantial-Equation-t-2-y-2-t-t-y-1-t-t-2-2-y-t-0-we-Already-Know-Solution-y-t-C-1-J-t-C-2-J-t-But-J-t-can-t-Satisfy-as-Solutio




Question Number 212906 by issac last updated on 26/Oct/24
Pls i need a help..  from Ordinary differantial Equation  t^2 y^((2)) (t)+t∙y^((1)) (t)+(t^2 −ν^2 )y(t)=0  we Already Know  Solution y(t)=C_1 J_ν (t)+C_2 J_(−ν) (t)  But J_(−ν) (t) can′t Satisfy as Solution  Cus J_ν (t) and J_(−ν) (t) are Not Linear independent.  Wronskian W∈mat(m,m)  det W=0  thus Solution y(t)=C_1 J_ν (t)+C_2 Y_ν (t)  i already undertand above indentity  i wrote  my question is prove Abel′s identity   W(J_ν (t),Y_ν (t))=(2/(πt))  Pls Help  :(
Plsineedahelp..fromOrdinarydifferantialEquationt2y(2)(t)+ty(1)(t)+(t2ν2)y(t)=0weAlreadyKnowSolutiony(t)=C1Jν(t)+C2Jν(t)ButJν(t)cantSatisfyasSolutionCusJν(t)andJν(t)areNotLinearindependent.WronskianWmat(m,m)detW=0thusSolutiony(t)=C1Jν(t)+C2Yν(t)ialreadyundertandaboveindentityiwrotemyquestionisproveAbelsidentityW(Jν(t),Yν(t))=2πtPlsHelp:(
Commented by issac last updated on 26/Oct/24
   Wronskian mat(n,n)    W= ((f_1 ,f_2 ,…,f_n ),(f_1 ^((1)) ,f_2 ^((1)) ,…,f_n ^((1)) ),(⋮, ,⋮, ),(f_1 ^((m−1)) ,f_2 ^((m−1)) ,…,f_n ^((m−1)) ) )  det W=0  →linear dependence.  det W≠0  →linear independence.
Wronskianmat(n,n)W=(f1f2fnf1(1)f2(1)fn(1)f1(m1)f2(m1)fn(m1))detW=0lineardependence.detW0linearindependence.

Leave a Reply

Your email address will not be published. Required fields are marked *