Menu Close

4-x-125-and-8-y-5-find-2x-y-y-




Question Number 212976 by hardmath last updated on 27/Oct/24
4^x  = 125   and   8^y  = 5  find:   ((2x − y)/y) = ?
$$\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:=\:\mathrm{125}\:\:\:\mathrm{and}\:\:\:\mathrm{8}^{\boldsymbol{\mathrm{y}}} \:=\:\mathrm{5} \\ $$$$\mathrm{find}:\:\:\:\frac{\mathrm{2x}\:−\:\mathrm{y}}{\mathrm{y}}\:=\:? \\ $$
Answered by Amiltonsad last updated on 27/Oct/24
  how 4^(x ) =125  ⇒ 2^(2x)  = 5^3  and (2)^((2x)/3)  = 5  and how... 8^y  = 5  2^(3y)  = 5    finally we can say ((2x − y)/y) = ((9y − y)/y) = ((8y)/y) =8  answered by Alfa dos ALFAS
$$ \\ $$$${how}\:\mathrm{4}^{{x}\:} =\mathrm{125}\:\:\Rightarrow\:\mathrm{2}^{\mathrm{2}{x}} \:=\:\mathrm{5}^{\mathrm{3}} \:{and}\:\left(\mathrm{2}\right)^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \:=\:\mathrm{5} \\ $$$${and}\:{how}…\:\mathrm{8}^{{y}} \:=\:\mathrm{5}\:\:\mathrm{2}^{\mathrm{3}{y}} \:=\:\mathrm{5} \\ $$$$ \\ $$$${finally}\:{we}\:{can}\:{say}\:\frac{\mathrm{2}{x}\:−\:{y}}{{y}}\:=\:\frac{\mathrm{9}{y}\:−\:{y}}{{y}}\:=\:\frac{\mathrm{8}{y}}{{y}}\:=\mathrm{8} \\ $$$${answered}\:{by}\:{Alfa}\:{dos}\:{ALFAS} \\ $$
Answered by A5T last updated on 27/Oct/24
x=log_4 125=(3/2)log_2 5; y=log_8 5=((log_2 5)/3)  ⇒((2x−y)/y)=((2x)/y)−1=((3log_2 5)/((log_2 5)/3))−1=8
$${x}={log}_{\mathrm{4}} \mathrm{125}=\frac{\mathrm{3}}{\mathrm{2}}{log}_{\mathrm{2}} \mathrm{5};\:{y}={log}_{\mathrm{8}} \mathrm{5}=\frac{{log}_{\mathrm{2}} \mathrm{5}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\mathrm{2}{x}−{y}}{{y}}=\frac{\mathrm{2}{x}}{{y}}−\mathrm{1}=\frac{\mathrm{3}{log}_{\mathrm{2}} \mathrm{5}}{\frac{{log}_{\mathrm{2}} \mathrm{5}}{\mathrm{3}}}−\mathrm{1}=\mathrm{8} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *