Question Number 212928 by efronzo1 last updated on 27/Oct/24
Commented by mr W last updated on 27/Oct/24
$${does}\:{the}\:{question}\:{mean}\:{msximum} \\ $$$${or}\:{minimum}?\:{if}\:{C}\:{and}\:{D}\:{must}\:{lie} \\ $$$${between}\:{B}\:{and}\:{E},\:{then}\:{there}\:{is}\:{only} \\ $$$${min}\left({x}+{y}\right),\:{but}\:{no}\:{max}\left({x}+{y}\right).\:{if}\:{C} \\ $$$${and}\:{D}\:{may}\:{also}\:{lie}\:{at}\:{B}\:{and}\:{E},\:{then} \\ $$$${max}\left({x}+{y}\right)={max}\left(\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }+\mathrm{2},\:\mathrm{6}+\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }\right) \\ $$$$=\mathrm{2}+\mathrm{6}\sqrt{\mathrm{2}} \\ $$$${if}\:{the}\:{question}\:{means}\:{min}\left({x}+{y}\right), \\ $$$${answer}\:{see}\:{below}. \\ $$
Answered by golsendro last updated on 27/Oct/24
$$\:\:\mathrm{x}=\sqrt{\mathrm{36}+\mathrm{a}^{\mathrm{2}} } \\ $$$$\:\:\mathrm{y}=\sqrt{\mathrm{4}+\left(\mathrm{6}−\mathrm{a}\right)^{\mathrm{2}} } \\ $$$$\:\:\mathrm{Let}\:\mathrm{x}+\mathrm{y}\:=\:\mathrm{f}\left(\mathrm{a}\right)=\sqrt{\mathrm{36}+\mathrm{a}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{4}+\left(\mathrm{6}−\mathrm{a}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{f}\:'\left(\mathrm{a}\right)=\:\frac{\mathrm{a}}{\:\sqrt{\mathrm{36}+\mathrm{a}^{\mathrm{2}} }}\:−\frac{\left(\mathrm{6}−\mathrm{a}\right)}{\:\sqrt{\mathrm{40}−\mathrm{12a}+\mathrm{a}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\:\:\:\mathrm{a}^{\mathrm{2}} \:\left(\mathrm{40}−\mathrm{12a}+\mathrm{a}^{\mathrm{2}} \right)=\:\left(\mathrm{36}+\mathrm{a}^{\mathrm{2}} \right)\left(\mathrm{36}−\mathrm{12a}+\mathrm{a}^{\mathrm{2}} \right) \\ $$$$ \\ $$
Answered by mr W last updated on 27/Oct/24
Commented by mr W last updated on 27/Oct/24
$${min}\left({x}+{y}\right)={A}'{F}=\sqrt{\mathrm{6}^{\mathrm{2}} +\left(\mathrm{6}+\mathrm{2}\right)^{\mathrm{2}} }=\mathrm{10} \\ $$