Menu Close

a-gt-0-b-gt-0-a-b-2-Find-the-minimum-value-of-a-a-b-b-




Question Number 212992 by CrispyXYZ last updated on 28/Oct/24
a>0. b>0. a+b=2.  Find the minimum value of a^(√a) b^(√b) .
$${a}>\mathrm{0}.\:{b}>\mathrm{0}.\:{a}+{b}=\mathrm{2}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{a}^{\sqrt{{a}}} {b}^{\sqrt{{b}}} . \\ $$
Answered by Ghisom last updated on 28/Oct/24
b=2−a  a^(√a) (2−a)^(√(2−a)) ; 0<a<2  since lim_(x→0)  x^(√x) =1 the minimum occurs at  the center of the interval ⇒  min (a^(√a) b^(√b) )=1 at a=b=1
$${b}=\mathrm{2}−{a} \\ $$$${a}^{\sqrt{{a}}} \left(\mathrm{2}−{a}\right)^{\sqrt{\mathrm{2}−{a}}} ;\:\mathrm{0}<{a}<\mathrm{2} \\ $$$$\mathrm{since}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}^{\sqrt{{x}}} =\mathrm{1}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{occurs}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{interval}\:\Rightarrow \\ $$$$\mathrm{min}\:\left({a}^{\sqrt{{a}}} {b}^{\sqrt{{b}}} \right)=\mathrm{1}\:\mathrm{at}\:{a}={b}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *