Menu Close

Question-213043




Question Number 213043 by ajfour last updated on 29/Oct/24
Commented by ajfour last updated on 29/Oct/24
Find β such that it remains constant  while the motion of frame down the  slope of inclination α.
$${Find}\:\beta\:{such}\:{that}\:{it}\:{remains}\:{constant} \\ $$$${while}\:{the}\:{motion}\:{of}\:{frame}\:{down}\:{the} \\ $$$${slope}\:{of}\:{inclination}\:\alpha. \\ $$
Answered by mr W last updated on 29/Oct/24
Commented by mr W last updated on 29/Oct/24
since β remains constant, the frame  has no rotation motion, that means  all three forces acting on the frame  must intersect at the same point,  i.e. on its center of mass. that means  ϕ=0, or β=α.
$${since}\:\beta\:{remains}\:{constant},\:{the}\:{frame} \\ $$$${has}\:{no}\:{rotation}\:{motion},\:{that}\:{means} \\ $$$${all}\:{three}\:{forces}\:{acting}\:{on}\:{the}\:{frame} \\ $$$${must}\:{intersect}\:{at}\:{the}\:{same}\:{point}, \\ $$$${i}.{e}.\:{on}\:{its}\:{center}\:{of}\:{mass}.\:{that}\:{means} \\ $$$$\varphi=\mathrm{0},\:{or}\:\beta=\alpha. \\ $$
Commented by ajfour last updated on 29/Oct/24
mg((b/2))cos (90°−α−ϕ)      =(mgsin α)((b/2))cos ϕ  ⇒ sin (α+ϕ)=sin αcos ϕ  ⇒ cos αsin ϕ=0  ⇒ ϕ=0
$${mg}\left(\frac{{b}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\mathrm{90}°−\alpha−\varphi\right) \\ $$$$\:\:\:\:=\left({mg}\mathrm{sin}\:\alpha\right)\left(\frac{{b}}{\mathrm{2}}\right)\mathrm{cos}\:\varphi \\ $$$$\Rightarrow\:\mathrm{sin}\:\left(\alpha+\varphi\right)=\mathrm{sin}\:\alpha\mathrm{cos}\:\varphi \\ $$$$\Rightarrow\:\mathrm{cos}\:\alpha\mathrm{sin}\:\varphi=\mathrm{0} \\ $$$$\Rightarrow\:\varphi=\mathrm{0} \\ $$
Commented by ajfour last updated on 29/Oct/24
must be so, thank you sir.
$${must}\:{be}\:{so},\:{thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *