Menu Close

3x-2-5x-2-2x-3-dx-




Question Number 213098 by MathematicalUser2357 last updated on 30/Oct/24
∫((3x+2)/(5x^2 +2x+3))dx=?
3x+25x2+2x+3dx=?
Answered by issac last updated on 30/Oct/24
Hmmmmm.....  ((3x+2)/(5x^2 +2x+3))=((3(10x+2))/(10(5x^2 +2x+3)))+(7/(5(5x^2 +2x+3)))  ∫  ((3x+2)/(5x^2 +2x+3)) =∫ ((3(10x+2))/(10(5x^2 +2x+3)))+∫ (7/(5(5x^2 +2x+3)))  (3/(10)) ∫  ((10x+2)/(5x^2 +2x+3))dx+(7/5) ∫  (1/(5x^2 +2x+3))dx  u=5x^2 +2x+3   → du=(10x+2)dx  (3/(10)) ∫  (du/u)=(3/(10))ln(u)=(3/(10))ln(5x^2 +2x+3)   (A)  and (7/5) ∫  (1/(5x^2 +2x+3))dx=(7/5) ∫  (1/(((√5)x+(1/( (√5))))^2 +((14)/5)))dx  (√5)x+(1/( (√5)))=u  → du=(√5)dx  (7/(5(√5))) ∫  (5/(14(((5u^2 )/(14))+1)))du=(1/(2(√5))) ∫  (1/(((5u^2 )/(14))+1))du  p=(√(5/(14)))v  →  dp=(√(5/(14))) dv  (1/5)(√(7/2)) ∫  (1/(p^2 +1))dp=(1/5)(√(7/2)) tan^(−1) (p)  =(1/5)(√(7/2)) tan^(−1) ((√(5/(14)))v)=(1/5)(√(7/2))tan^(−1) (((5x+1)/( (√(14)))))  (B)  ∴ Solution=A+B  y(x)=(3/(10))ln(5x^2 +2x+3)+((√(14))/(10)) tan^(−1) (((5x+1)/( (√(14)))))       Holy.....shit....what a terrible differantial equation   XD
Hmmmmm..3x+25x2+2x+3=3(10x+2)10(5x2+2x+3)+75(5x2+2x+3)3x+25x2+2x+3=3(10x+2)10(5x2+2x+3)+75(5x2+2x+3)31010x+25x2+2x+3dx+7515x2+2x+3dxu=5x2+2x+3du=(10x+2)dx310duu=310ln(u)=310ln(5x2+2x+3)(A)and7515x2+2x+3dx=751(5x+15)2+145dx5x+15=udu=5dx755514(5u214+1)du=12515u214+1dup=514vdp=514dv15721p2+1dp=1572tan1(p)=1572tan1(514v)=1572tan1(5x+114)(B)Solution=A+By(x)=310ln(5x2+2x+3)+1410tan1(5x+114)Holy..shit.whataterribledifferantialequationXD
Commented by Frix last updated on 31/Oct/24
Why terrible? Try this:  ∫sin x^3  dx=?
Whyterrible?Trythis:sinx3dx=?
Answered by MrGaster last updated on 30/Oct/24
=(1/5)∫((15x+10)/(5x^2 +2x+3))dx  =(1/5)∫((15x+2+8)/(5x^2 +2x+3))dx  =(1/5)(∫((15x+2)/(5x^2 +2x+3))dx+∫(8/(5x^2 +2x+3))dx)  =(1/5)(∫((d(5x^2 +2x+3))/(5x^2 +2x+3))+∫(8/(5(x^2 +(2/5)x+(3/5)))dx)  =(1/5)(ln∣5x^2 +2x+3∣+8∫(1/(5(x^2 +(2/5)x+(3/5))))dx)  =(1/5)(ln∣5x^2 +2x+3∣+(8/5)∫(1/((x+(1/5))^2 +(((√(14))/5))^2 ))dx)  =(1/5)ln∣5x^2 +2x+3∣+(8/(25))∙(5/( (√(14))))arctan(((x+(1/5))/((√(14))/5)))+C  =(1/5)ln∣5x^2 +2x+3∣+(8/( (√(14))))arctan(((5x+1)/( (√(14)))))+C
=1515x+105x2+2x+3dx=1515x+2+85x2+2x+3dx=15(15x+25x2+2x+3dx+85x2+2x+3dx)=15(d(5x2+2x+3)5x2+2x+3+85(x2+25x+35dx)=15(ln5x2+2x+3+815(x2+25x+35)dx)=15(ln5x2+2x+3+851(x+15)2+(145)2dx)=15ln5x2+2x+3+825514arctan(x+15145)+C=15ln5x2+2x+3+814arctan(5x+114)+C
Answered by Ghisom last updated on 30/Oct/24
∫((3x+2)/(5x^2 +2x+3))dx=       [t=((5x+1)/( (√(14))))]  =(3/5)∫(t/(t^2 +1))dt+((√(14))/(10))∫(dt/(t^2 +1))=  =(3/(10))ln (t^2 +1) +((√(14))/(10))arctan t =  =(3/(10))ln (5x^2 +2x+3) +((√(14))/(10))arctan ((5x+1)/( (√(14)))) +C
3x+25x2+2x+3dx=[t=5x+114]=35tt2+1dt+1410dtt2+1==310ln(t2+1)+1410arctant==310ln(5x2+2x+3)+1410arctan5x+114+C

Leave a Reply

Your email address will not be published. Required fields are marked *