Question Number 213123 by a.lgnaoui last updated on 30/Oct/24
$$\mathrm{factoriser} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{5}} +\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{1} \\ $$
Answered by MrGaster last updated on 30/Oct/24
$$\left({x}^{\mathrm{5}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}\right)=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}\right) \\ $$$$\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}\right)=\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$\left({x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1}\right)=\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$$\left({x}^{\mathrm{5}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}\right)=\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$
Commented by a.lgnaoui last updated on 30/Oct/24
$$\mathrm{thank}\:\mathrm{you}. \\ $$
Commented by A5T last updated on 30/Oct/24
$$={x}^{\mathrm{5}} −{x}+{x}^{\mathrm{3}} −{x}+{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$={x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)+{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$=\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1}\right) \\ $$$${x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1}\neq\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$