Menu Close

prove-lim-n-0-1-n-1-n-2-x-2-e-x-2-dx-pi-2-




Question Number 213169 by MrGaster last updated on 31/Oct/24
                      prove       lim_(n→∞) ∫_0 ^1 (n/(1+n^2 x^2 ))e^x^2  dx=(π/2).
provelimn01n1+n2x2ex2dx=π2.
Answered by Berbere last updated on 31/Oct/24
∫_> ^1 (n/(1+n^2 x^2 ))e^x^2  dx=[tan^(−1) (nx)e^x^2  ]−∫_0 ^1 2xe^x^2  tan^(−1) (nx)dx  =(π/2)e−∫_0 ^1 2xe^x^2  tan^(−1) (nx)dx=((πe)/2)−∫_0 ^1 2xe^x^2  [(π/2)−tan^(−1) ((1/(nx)))]dx  =((πe)/2)−(π/2)(e−1)+2∫_0 ^1 xe^x^2  tan^(−1) ((1/(nx)))  =(π/2)+B  ∀x≥0 tan^(−1) (x)<x  ⇒∫_0 ^1 xe^x^2  tan^(−1) ((1/(nx)))dx≤∫_0 ^1 (e^x^2  /n)dx≤(e/n)  ⇒lim_(n→∞) B=0⇒  lim_(n→∞)  ∫_0 ^1 (n/(1+n^2 x^2 ))e^x^2  dx=(π/2)
>1n1+n2x2ex2dx=[tan1(nx)ex2]012xex2tan1(nx)dx=π2e012xex2tan1(nx)dx=πe2012xex2[π2tan1(1nx)]dx=πe2π2(e1)+201xex2tan1(1nx)=π2+Bx0tan1(x)<x01xex2tan1(1nx)dx01ex2ndxenlimnB=0limn01n1+n2x2ex2dx=π2

Leave a Reply

Your email address will not be published. Required fields are marked *