Question Number 213139 by Spillover last updated on 31/Oct/24
Answered by MrGaster last updated on 31/Oct/24
$${let}\:{u}=\sqrt{{x}}+\sqrt{{y}}+{z}\Rightarrow{dy}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{dx}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{y}}}{dy}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{z}}}{dx} \\ $$$$\Rightarrow\mathrm{0}\leq{u}\leq\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}} \\ $$$$\Rightarrow{dxdydz}=\mathrm{8}{u}^{\mathrm{2}} {du} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}} \mathrm{sin}\left({u}\right)\centerdot\mathrm{8}{u}^{\mathrm{2}} {du}\Rightarrow\mathrm{8}\int_{\mathrm{0}} ^{\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}} {u}^{\mathrm{2}} \mathrm{sin}\left({u}\right){du} \\ $$$${let}\:{u}={u}^{\mathrm{2}} ,{du}=\mathrm{2}{udu},{dw}=\mathrm{sin}\left({u}\right){du},{w}=−\mathrm{cos}\left({u}\right) \\ $$$$\Rightarrow\int{u}^{\mathrm{2}} \mathrm{sin}\left({u}\right){du}=−{u}^{\mathrm{2}} \mathrm{cos}\left({u}\right)+\mathrm{2}\int{u}\:\mathrm{cos}\left({u}\right) \\ $$$${let}\:{v}={u},{dv}={du},{dw}=\mathrm{cos}\left({u}\right){du},{w}=\mathrm{sin}\left({u}\right) \\ $$$$\Rightarrow\int{u}\:\mathrm{cos}\left({u}\right){du}={u}\:\mathrm{sin}\left({u}\right){du}={u}\:\mathrm{sin}\left({u}\right)+\mathrm{cos}\left({u}\right) \\ $$$$\Rightarrow\int{u}^{\mathrm{2}} \mathrm{sin}\left({u}\right){du}=−{u}^{\mathrm{2}} \mathrm{cos}\left({u}\right)+\mathrm{2}\left({u}\:\mathrm{sin}\left({u}\right)+\mathrm{cos}\left({u}\right)\right) \\ $$$$\mathrm{8}−\left[−\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)\mathrm{cos}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)+\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{2}}\mathrm{sin}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)+\mathrm{2}\:\mathrm{cos}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)+\mathrm{2}\:\mathrm{cos}\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right] \\ $$$$\Rightarrow\mathrm{8}\left[−\frac{\mathrm{9}\pi}{\mathrm{16}}\mathrm{cos}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)+\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{2}}\mathrm{sin}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)+\mathrm{2cos}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)\right] \\ $$$$\Leftrightarrow\mathrm{8}\left[\left(\mathrm{2}−\frac{\mathrm{9}\pi}{\mathrm{16}}\right)\mathrm{cos}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)+\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{2}}\mathrm{sin}\left(\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}\right)\right] \\ $$
Commented by Frix last updated on 31/Oct/24
$$\mathrm{No}. \\ $$
Commented by MathematicalUser2357 last updated on 02/Nov/24
$$=\mathrm{21}.\mathrm{097872} \\ $$
Answered by Frix last updated on 31/Oct/24
$$\mathrm{Using} \\ $$$$\left(\mathrm{1}\right) \\ $$$$\int\mathrm{sin}\:\left(\alpha+\sqrt{{t}}\right)\:{dt}\:\overset{\left[{u}=\sqrt{{t}}\right]} {=}\:\mathrm{2}\int{u}\mathrm{sin}\:\left(\alpha+{u}\right)\:{du}\:\overset{\left[\mathrm{by}\:\mathrm{parts}.\right]} {=} \\ $$$$=\mathrm{2}\left(\mathrm{sin}\:\left(\alpha+{u}\right)\:−{u}\mathrm{cos}\:\left(\alpha+{u}\right)\right)= \\ $$$$=\mathrm{2}\left(\mathrm{sin}\:\left(\alpha+\sqrt{{t}}\right)\:−\sqrt{{t}}\mathrm{cos}\:\left(\alpha+\sqrt{{t}}\right)\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Similar} \\ $$$$\int\mathrm{cos}\:\left(\alpha+\sqrt{{t}}\right)\:{dt}=\mathrm{2}\left(\mathrm{cos}\:\left(\alpha+\sqrt{{t}}\right)\:+\sqrt{{t}}\mathrm{sin}\:\left(\alpha+\sqrt{{t}}\right)\right) \\ $$$$\mathrm{We}\:\mathrm{get} \\ $$$$\mathrm{6}\left(\mathrm{4}\sqrt{\pi}\mathrm{cos}\:\sqrt{\pi}+\left(\pi−\mathrm{4}\right)\mathrm{sin}\sqrt{\pi}\right)− \\ $$$$\:\:\:\:\:−\mathrm{12}\left(\sqrt{\pi}\mathrm{cos}\:\frac{\sqrt{\pi}}{\mathrm{2}}\:−\mathrm{2sin}\:\frac{\sqrt{\pi}}{\mathrm{2}}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\:+\sqrt{\pi}\left(\pi−\mathrm{12}\right)\mathrm{cos}\:\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{2}}\:−\mathrm{2}\left(\mathrm{3}\pi−\mathrm{4}\right)\mathrm{sin}\:\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{2}} \\ $$
Answered by lepuissantcedricjunior last updated on 01/Nov/24
$$\boldsymbol{{k}}=\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \boldsymbol{{sin}}\left(\sqrt{\boldsymbol{{x}}}+\sqrt{\boldsymbol{{y}}}+\sqrt{\boldsymbol{{z}}}\right)\boldsymbol{{dxdydz}} \\ $$$$\:\:\:=\boldsymbol{{Im}}\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \boldsymbol{{e}}^{\boldsymbol{{i}}\left(\sqrt{\boldsymbol{{x}}}+\sqrt{\boldsymbol{{y}}}+\sqrt{\boldsymbol{{z}}}\right)} \boldsymbol{{dxdydz}} \\ $$$$\:\:\:=\boldsymbol{{Im}}\left(\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \boldsymbol{{e}}^{\boldsymbol{{i}}\sqrt{\boldsymbol{{x}}}} \boldsymbol{{dx}}\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \boldsymbol{{e}}^{\boldsymbol{{i}}\sqrt{\boldsymbol{{y}}}} \boldsymbol{{dy}}\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \boldsymbol{{e}}^{\boldsymbol{{i}}\sqrt{\boldsymbol{{z}}}} \boldsymbol{{dz}}\right) \\ $$$$\boldsymbol{{posons}}\:\boldsymbol{{x}}=\boldsymbol{{n}}^{\mathrm{2}} ;\boldsymbol{{y}}=\boldsymbol{{p}}^{\mathrm{2}} ;\boldsymbol{{z}}=\boldsymbol{{q}}^{\mathrm{2}} \\ $$$$=\boldsymbol{{Im}}\left[\left\{\underset{\mathrm{0}} {\int}^{\sqrt{\frac{\boldsymbol{\pi}}{\mathrm{4}}}} \mathrm{2}\boldsymbol{{ne}}^{\boldsymbol{{in}}} \boldsymbol{{dn}}\right\}\left\{\int_{\mathrm{0}} ^{\sqrt{\frac{\boldsymbol{\pi}}{\mathrm{4}}}} \mathrm{2}\boldsymbol{{pe}}^{\boldsymbol{{ip}}} \boldsymbol{{dp}}\right\}\left\{\int_{\mathrm{0}} ^{\sqrt{\frac{\boldsymbol{\pi}}{\mathrm{4}}}} \mathrm{2}\boldsymbol{{qe}}^{\boldsymbol{{iq}}} \boldsymbol{{dq}}\right\}\right] \\ $$$$=\boldsymbol{{Im}}\left\{\left[\frac{\mathrm{2}\boldsymbol{{ne}}^{\boldsymbol{{in}}} }{\boldsymbol{{i}}}+\mathrm{2}\boldsymbol{{e}}^{\boldsymbol{{in}}} +\frac{\mathrm{2}\boldsymbol{{pe}}^{\boldsymbol{{ip}}} }{\boldsymbol{{i}}}+\mathrm{2}\boldsymbol{{e}}^{\boldsymbol{{ip}}} +\frac{\mathrm{2}\boldsymbol{{qe}}^{\boldsymbol{{iq}}} }{\boldsymbol{{i}}}+\mathrm{2}\boldsymbol{{e}}^{\boldsymbol{{iq}}} \right]_{\mathrm{0}} ^{\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{2}}} \right. \\ $$$$=\boldsymbol{{I}}{m}\left[\mathrm{3}\frac{\sqrt{\boldsymbol{\pi}}}{\boldsymbol{{i}}}\boldsymbol{{e}}^{\boldsymbol{{i}}\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{2}}} −\mathrm{6}\right]={I}\boldsymbol{{m}}\left(−\mathrm{6}+\mathrm{3}\sqrt{\boldsymbol{\pi}}\boldsymbol{{e}}^{\boldsymbol{{i}}\left(\frac{\sqrt{\boldsymbol{\pi}}−\boldsymbol{\pi}}{\mathrm{2}}\right)} \right) \\ $$$$\boldsymbol{{i}}=\mathrm{3}\sqrt{\boldsymbol{\pi}}\boldsymbol{{sin}}\left(\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{2}}−\frac{\boldsymbol{\pi}}{\mathrm{2}}\right)=−\mathrm{3}\sqrt{\pi}\boldsymbol{{cos}}\left(\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{2}}\right) \\ $$
Commented by Frix last updated on 01/Nov/24
$$\mathrm{But}\:\mathrm{it}'\mathrm{s}\:\mathrm{wrong}. \\ $$