Menu Close

Let-f-x-Q-x-irreducible-of-degree-n-and-K-it-s-Splitting-Field-over-Q-Prove-that-if-Gal-K-Q-is-Abeilan-then-Gal-K-Q-n-How-can-i-prove-this-




Question Number 213208 by issac last updated on 01/Nov/24
Let f(x)∈Q[x] irreducible of degree n  and K it′s Splitting Field over Q  Prove that if Gal(K\Q) is Abeilan  then ∣Gal(K\Q)∣=n  How can i prove this???
Letf(x)Q[x]irreducibleofdegreenandKitsSplittingFieldoverQProvethatifGal(KQ)isAbeilanthenGal(KQ)∣=nHowcaniprovethis???
Answered by MrGaster last updated on 01/Nov/24
f(x)∈ Q[x],deg(f)=n  K/Q is the splitting field of f(x)=G=Gal(K/Q)  G is abelian  α_1 ,α_2 ,…,α_n are roots of f(x)in K  K=Q(α_1 ,α_2 ,…,α_n )  ∣G∣=[K:Q]  σ ∈ G,σ(α_i )=α_j ,σ(α_j )=α_i ,σ(α_κ )=α_κ ,k≠i,j  στ=τσ,∀σ,τ  ∈ G  σ(α_i )α_j ⇒σ(α_j )=α_i or α_j   σ(α_i )=α_j ,τ(α_i )=α_κ ,σ(α_κ )=α_κ   στ(α_i )=σ(α_κ )=α_κ   τσ(α_i )=τ(α_j )=α_κ   σ(α_j )=α_j for all σ ∈ G  σ(α_i )=α_j ⇒α_i and α_j are conjugate over Q α_1 ,α_2 ,…,α_n  are distinct and conjugate o  ∣G∣=n
f(x)Q[x],deg(f)=nK/Qisthesplittingfieldoff(x)=G=Gal(K/Q)Gisabelianα1,α2,,αnarerootsoff(x)inKK=Q(α1,α2,,αn)G∣=[K:Q]σG,σ(αi)=αj,σ(αj)=αi,σ(ακ)=ακ,ki,jστ=τσ,σ,τGσ(αi)αjσ(αj)=αiorαjσ(αi)=αj,τ(αi)=ακ,σ(ακ)=ακστ(αi)=σ(ακ)=ακτσ(αi)=τ(αj)=ακσ(αj)=αjforallσGσ(αi)=αjαiandαjareconjugateoverQα1,α2,,αnaredistinctandconjugateoG∣=n

Leave a Reply

Your email address will not be published. Required fields are marked *